ANTECEDENTES APORTADOS POR LA ASOCIACIÓN NACIONAL AUTOMOTRIZ DE CHILE (ANAC) – mail Octubre 2018

- "Consolidated Resolution on the Construction of Vehicle (R.E.3)", en su Revisión 6, del 11 de Julio de 2017. Naciones Unidas.
- Norma SAE J1470 Measurement of Noise Emitted by Accelerating Highway Vehicles.
- Regulation no. 51 uniform provisions concerning the approval of motor vehicles having at least four wheels with regard to their noise emissions.
- Addendum 50 Regulation No. 51 Revision 3 Uniform provisions concerning the approval of motor vehicles having at least four wheels with regard to their sound emissions.

2000034

United Nations

1 . 7 K.

Economic and Social Council

ECE/TRANS/WP.29/78/Rev.6

Distr.: General

Original: English

Economic Commission for Europe

Inland Transport Committee

World Forum for Harmonization of Vehicle Regulations

Consolidated Resolution on the Construction of Vehicles (R.E.3)

Revision 6

This revised consolidated version of the Resolution on the Construction of Vehicles (R.E.3) replaces ECE/TRANS/WP.29/78/Rev.5 contains the amendments adopted by the World Forum for Harmonization of Vehicle Regulations (WP.29) at its 172th session (ECE/TRANS/WP.29/2017/46). It has been completed by references to UN Regulations annexed to the 1958 Agreement and the list of distinguishing numbers of Contracting Parties.

2000034 VTA

ECE/TRANS/WP.29/78/Rev.6

2.7. "*Non-road mobile machinery*": Any mobile machine, transportable industrial equipment or vehicle with or without body work, not intended for the use of passenger- or goods-transport on the road, in which an internal combustion engine is installed.

2.8. Category G - off-road vehicles

2.8.1. Definition.

Off-road vehicles are considered to be the vehicles of categories M and N satisfying the requirements of this paragraph, checked under the conditions indicated in paragraphs 2.8.2. and 2.8.3.

- 2.8.1.1. Vehicles in category N_1 with a maximum mass not exceeding 2 tonnes and vehicles in category M_1 are considered to be off-road vehicles if they have:
 - (a) At least one front axle and at least one rear axle designed to be driven simultaneously including vehicles where the drive to one axle can be disengaged;
 - (b) At least one differential locking mechanism or at least one mechanism having a similar effect; and
 - (c) If they can climb a 30 per cent gradient calculated for a solo vehicle;
 - (d) In addition, they shall satisfy a least five of the following six requirements:
 - (i) The approach angle shall be at least 25°;
 - (ii) The departure angle shall be at least 20°;
 - (iii) The ramp angle shall be at least 20°;
 - (iv) The ground clearance under the front axle shall be at least 180 mm;
 - The ground clearance under the rear axle shall be at least 180 mm;
 - (vi) The ground clearance between the axles shall be at least 200 mm.
- 2.8.1.2. Vehicles in category N_1 with a maximum mass exceeding 2 tonnes or in category N_2 , M_2 or M_3 with a maximum mass not exceeding 12 tonnes are considered to be off-road vehicles either if all their wheels are designed to be driven simultaneously, including vehicles where the drive to one axle can be disengaged, or if the following three requirements are satisfied:
 - (a) At least one front axle and at least one rear axle are designed to be driven simultaneously, including vehicles where the drive to one axle can be disengaged;
 - (b) There is at least one differential locking mechanism or at least one mechanism having a similar effect;
 - (c) They can climb a 25 per cent gradient calculated for a solo vehicle.
- 2.8.1.3. Vehicles in category M₃ with a maximum mass exceeding 12 tonnes or in category N₃ are considered to be off-road either if the wheels are designed to be driven simultaneously, including vehicles where the drive to one axle can be disengaged, or if the following requirements are satisfied:
 - (a) At least half the wheels are driven;

- (b) There is at least one differential locking mechanism or at least one mechanism having a similar effect;
- (c) They can climb a 25 per cent gradient calculated for a solo vehicle;
- (d) At least four of the following six requirements are satisfied:
 - (i) The approach angle shall be at least 25°;
 - (ii) The departure angle shall be at least 25°;
 - (iii) The ramp angle shall be at least 25°;
 - (iv) The ground clearance under the front axle shall be at least 250 mm;
 - (v) The ground clearance between the axles shall be at least 300 mm;
 - (vi) The ground clearance under the rear axle shall be at least 250 mm.
- 2.8.2. Load and checking conditions
- 2.8.2.1. Vehicles in category N_1 with a maximum mass not exceeding two tonnes and vehicles in category M_1 shall be in running order, namely with coolant fluid, lubricants, fuel, tools, spare-wheel and a driver considered to weigh a standard 75 kilograms.
- 2.8.2.2. Power-driven vehicles other than those referred to in paragraph 2.8.2.1. shall be loaded to the technically permissible maximum mass stated by the manufacturer.
- 2.8.2.3. The ability to climb the required gradients (25 per cent and 30 per cent) is verified by simple calculation. In exceptional cases, however, the Technical Services may ask for a vehicle of the type concerned to be submitted to it for an actual test.
- 2.8.2.4. When measuring front and rear incidence angles and ramp angles, no account is taken of underrun protective devices.
- 2.8.3. Definitions and sketches of front and rear incidence angles, ramp angle and ground clearance.
- 2.8.3.1. "Approach angle" see Standard ISO 612:1978, term No. 6.10.

2.8.3.2. "Departure angle" - see Standard ISO 612:1978, term No. 6.11.

28000035 VTA

ECE/TRANS/WP.29/78/Rev.6

12

SE INTERNATIONAL.

SURFACE VEHICLE STANDARD	J1470	NOV2013
	Issued 1984-10 Reaffirmed 2013-11 Superseding J1470 JUN1	998
Measurement of Noise Emitted by Accelerating Highway Vehicles		

ATV 000036

RATIONALE

J1470 has been reaffirmed to comply with the SAE five year review policy.

 Scope—This SAE Standard is equivalent to ISO Standard 362 - 1997 except for the differences detailed in Appendix A, and includes the modifications adopted by WP 29 in ECE R51 Revision 1 and EEC 92/97 and EEC 96/20.

This document specifies an engineering method for measuring the noise emitted by accelerating highway vehicles of all types (except motorcycles) in intermediate gears with full utilization of the available engine power.

The method is designed to meet the requirements of simplicity and reproducibility of results under realistic vehicle operating conditions.

Measurements relate to operating conditions of the vehicle which give the highest noise level consistent with urban driving and which lead to reproducible noise emissions. Therefore, an acceleration test at full throttle from a stated engine or vehicle speed is specified.

The test method calls for an acoustical environment which can only be obtained in an extensive open space. Such conditions can usually be provided for:

- a. Measurements at the manufacturing stage
- b. Measurements at official testing stations

Measurements must be carried out in an acoustical environment which fulfill the requirements stated in this document. It should be noted that spot checking of vehicles chosen at random can rarely be made in an ideal acoustical environment. If measurements have to be carried out on the road in an acoustical environment which does not fulfill the requirements stated in this document, it should be recognized that the results obtained may deviate appreciably from the results obtained using the specified conditions.

The results obtained by this method give an objective measure of the noise emitted under prescribed conditions of test. However, it is necessary to consider the fact that the subjective appraisal of the annoyance of different classes of motor vehicles is not simply related to the indications of a sound level meter. The motorcycles are covered in other SAE documents that prescribe an operating mode that is more representative of actual use.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/J1470 201311

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user." SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2013 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

SAE INTERNATIONAL

2. References

- 2.1 Applicable Publications—The following publications form a part of this specification to the extent specified herein. Unless other indicated, the latest issue of SAE publications shall apply.
- 2.1.1 SAE PUBLICATIONS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

SAE J184—Qualifying a Sound Data Acquisition System
SAE J1349—Engine Power Test—Spark Ignition and Diesel
SAE 951361—Paper from the SAE Noise & Vibration Conference Report, P-291, Volume 2, SAE and ISO Noise Test Site Variability

2.1.2 ANSI PUBLICATIONS—Available from ANSI, 11 West 42nd Street, New York, NY 10036-8002.

ANSI S1.4-1983 and S1.4A-1985—Specification for Sound Level Meters ANSI S1.40-1984—Specification for Acoustical Calibrators

2.1.3 ECE PUBLICATIONS—Available from United Nations Economic Commission for Europe, Palais Des Nations, CH-1211, Geneva 10, Switzerland.

ECE R51—Uniform Provisions Concerning the Approval of Motor Vehicles Having at Least Four Wheels with Regard to Their Noise Emission

2.1.4 IEC PUBLICATIONS—Available from ANSI, 11 West 42nd Street, New York, NY 10036-8002.

IEC Publication 60651: 1979—Sound Level Meters IEC Publication 60942: 1988—Sound Calibrators

- 2.1.5 ISO PUBLICATIONS—Available from ANSI, 11 West 42nd Street, New York, NY 10036-8002.
 - ISO 362-1981—Acoustics—Measurement of noise emitted by accelerating road vehicles—Engineering method
 - ISO 1176-1974—Road vehicles—Masses—Vocabulary and Codes
 - ISO 1585-1982-Road vehicles-Engine test code-Net power
 - ISO 3833-1977—Road vehicles—Types—Terms and definitions
 - ISO 10844:1994—Acoustics—Specification of test tracks for purpose of measuring noise emitted by road vehicles
- 2.1.6 EUROPEAN ECONOMIC COMMUNITY EEC REFERENCE—Available from European Commission, Rue de la Loi 200, B-1049 Brussel, Belguim.
 - EC- 92/97/EEC—Council Directive of 10 November 1992 from the Official Journal of the European Communities
 - EC- 96/20/EEC—Council Directive of 27 March 1996 from the Official Journal of the European Communities
- 3. **Definitions**—For the purpose of this document, the following definitions apply.
- **3.1** Automatic Downshift—A gear change to a lower gear (higher numerical ratio) which occurs outside the control of the driver.
 - NOTE— An automatic downshift may be initiated, for example, by a change of pressure on or position of the accelerator control, thereby activating a special program which effects downshifts to gears which are lower than those normally used in urban driving.

000037

- **3.2** Forced Downshift—A gear change to a lower gear (higher numerical ratio) which can be initiated at the will of the driver. A forced downshift may be initiated, for example, by a change in the position of the throttle pedal, thereby activating an external switch which affects the downshift.
- 3.3 Kickdown—A forced downshift to the lowest possible gear (first or low gear).
- **3.4** Intermediate Result—The value calculated from the test series measurements and used to determine the reported value.
- **3.5 Curb Mass**—Complete shipping mass of a vehicle fitted with all equipment necessary for normal operation plus the mass of the following elements:
 - a. Lubricants, coolant (if needed), washer fluid,
 - b. Fuel (tank filled to at least 90% of the capacity specified by the manufacturer),
 - c. Optional equipment if included as standard parts for the vehicle such as: spare wheel(s), wheel chocks, fire extinguisher(s), spare parts, and tool-kit.
 - NOTE—The definition of curb mass may vary from country to country, but in this document, it refers to the definition contained in ISO 1176. The mass values listed are US equivalent to the metric requirement: 1 Metric Tonne = 1.1 tons.
- 3.6 Rated Engine Speed, S—That engine speed at which the engine develops its rated maximum net power as stated by the manufacturer.
 - NOTE—The test engine speed for governed engines is typically the maximum full load governed speed which is up to 500 rpm higher than the engine speed at maximum net power. The use of net rated power speed or maximum governed speed may vary from one regulatory group to another.

3.7 Vehicle Categories

- 3.7.1 Category M—Motor vehicles with at least four wheels used for the carriage of passengers:
 - M1—Vehicles used for the carriage of passengers and comprising no more than eight seats in addition to the driver's seat.
 - M2—Vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat, and having a maximum mass not exceeding 5.5 tons.
 - M3—Vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat, and having a maximum mass that exceeds 5.5 tons.
- 3.7.2 Category N—Motor vehicles with at least four wheels used for the carriage of goods:
 - N1—Vehicles used for the carriage of goods and having a maximum authorized total mass not exceeding 3.85 tons.
 - N2—Vehicles used for the carriage of goods and having a maximum authorized total mass exceeding 3.85 tons but not exceeding 13.2 tons.
 - N3—Vehicles used for the carriage of goods and having a maximum authorized total mass exceeding 13.2 tons.

SAE INTERNATIONAL

4. Instrumentation

4.1 Instrumentation for Acoustical Measurements—The sound level meter system including the windscreen recommended by the manufacturer shall meet Type 1 or Type S1A requirements of ANSI S1.4-1983. A microphone windscreen may be used, provided that it does not affect the microphone response by more than ±1dB for frequencies from 20 to 4000 Hz and ±1.5 dB for frequencies from 4000 to 10 000 Hz.

The sound level meter shall be set for the frequency weighting "A" and the time weighting "F."

The calibration of the sound level meter shall be checked and adjusted according to the manufacturer's instructions using a sound level meter calibrator meeting the requirements of ANSI S1.40-1984 (for example, a pistonphone) at the beginning of the measurements and rechecked and recorded at the end of them. (See 7.3.4)

If the readings of the sound level meter obtained from these calibrations change by more than 0.5 dB during a series of measurements, the test shall be considered invalid.

Compliance of the sound level meter with ANSI S1.4-1983, Type 1, shall be verified at intervals of not more than 2 years. The compliance of the sound calibration device with the requirements of ANSI S1.40-1984 shall be verified once a year. These compliance verification evaluations shall be performed by a laboratory which is authorized to perform calibrations traceable to the appropriate standards.

As an alternative to making direct sound level measurements using a sound level meter, a microphone or sound level meter may be used with a magnetic tape recorder, or other indicating instrument providing the system is in conformance with SAE J184. When using a system that includes a periodic monitoring of the A-weighted sound level, a reading should be made at a time interval not greater than 30 ms.

- **4.2** Instrumentation for Speed Measurements—Engine speed and vehicle speed shall be measured during the approach with instruments having an accuracy of 2% or better at the speeds required for the measurements being performed.
- **4.3 Other Instrumentation**—The meteorological instrumentation used to monitor the environmental conditions shall include the following:
 - a. A temperature measuring device which shall be accurate within ±1 °C.
 - b. A wind speed measuring device which shall be accurate within ±1.0 m/s.

5. Acoustical Environment, Meteorological Conditions, and Background Noise

5.1 Test Site—The test site shall be such that hemispherical divergence exists between the noise source and the microphone to within ±1dB.

This condition is deemed to be satisfied if the following requirements are met:

- a. Within a radius of 50 m around the center of the track, the space shall be free of large reflecting objects such as fences, rocks, bridges, or buildings. (See Figure 1.)
- b. The entire test track and the surface of the site up to 10 m from the center "0" of the track shall consist of concrete, non-porous or sealed asphalt, or similar hard material and be free of absorbing materials such as powdery snow, or ashes. (See Figure 1.)
- c. When this procedure is used for compliance and type approval of vehicle sold in non-US markets, the surface must be constructed according to the requirements given in ISO 10844. The surface shall also meet the performance criteria contained in ISO 10844.

FIGURE 1—TEST SITE DIMENSIONS - SHADED AREA ("TEST AREA") IS THE MINIMUM AREA TO BE COVERED WITH A SURFACE COMPLYING WITH ISO 10844.

d. In the vicinity of the microphone, there shall be no obstacle that could influence the acoustical field and no person shall be between the microphone and the noise source. The meter observer shall be positioned so as not to influence the meter reading.

A primary concern regarding the test site is flatness of the measurement area. The measurement area shall be flat within ± 0.05 m, particularly in that portion of this area between the vehicle path centerline and the microphone location and to a distance of 15 m before and after the intersection of the vehicle path and the perpendicular to it passing through the microphone location. (See Figure 1.)

5.2 Meteorological Conditions—The meteorological instrumentation should be positioned adjacent to the test area at a height representative of the site, except the specific location as follows.

It is recommended that the measurements be made when the ambient air temperature is within the range from 0 °C to 40 °C.

It is recommended that tests should not be carried out if the wind speed, including gusts, at microphone height exceeds 5 m/s, during the sound measurement interval.

It is recommended that a value representative of air temperature, wind speed and direction, relative humidity, and barometric pressure, and track temperature be recorded during the sound measurement interval.

5.3 Background Noise—It is recommended the background noise (including any wind noise) be 15 dB(A) below the sound produced by the vehicle under test, but it shall be at least 10 dB(A)

SAE INTERNATIONAL

6. Test Procedure

6.1 Microphone Positions—The distance from the microphone positions to the reference centerline CC (see Figure 1) on the test track shall be 7.5 m ± 0.05 m.

The microphone shall be located 1.2 m \pm 0.02 m above the ground level. Unless otherwise indicated by the manufacturer of the sound level meter, its reference axis for free field conditions (see ANSI S1.4-1983) shall be horizontal and directed perpendicularly towards the path of the vehicle (centerline CC) on the microphone line.

- 6.2 Number of Measurements—At least four measurements shall be made on each side of the vehicle.
- **6.3** Readings to be Taken—The maximum sound pressure level indicated during each passage of the vehicle when operated as specified in 6.5.1 shall be recorded. If a sound peak obviously out of character with the general sound level is observed, the measurement shall be discarded.

The results shall be considered valid if the differences between four consecutive measurements made on the side of the vehicle which gives the highest sound pressure level do not exceed 2 dB. If not, additional runs shall be made until four consecutive measurements on either side are within 2 dB of each other. The spread of results between runs may be reduced if there is a 1-minute wait, at idle in neutral, between runs.

Average the results of each side separately. The intermediate result is the higher of the two averages.

The final reported value for the vehicle is as indicated as follows:

- a. For vehicles in categories M1 and N1 tested in a single gear: the intermediate result.
- b. For vehicles in categories M1 and N1 tested in two gears: the arithmetic average of the intermediate results for each gear.
- c. For vehicles in all categories other than M1 and N1 tested in multiple gears: the highest intermediate result from the gear ranges tested.
- d. For vehicles tested at multiple speeds in all categories: the highest intermediate result.
- 6.4 Conditions of the Vehicles—Measurements shall be made on vehicles unladen (that is at curb mass) plus the driver and instrumentation, and except for the case of nonseparable vehicles, without trailer or semitrailer.

The vehicle shall be equipped with components that are representative of the intended production unit including engine, driveline, and noise control systems.

The tires used for the test shall be selected by the vehicle manufacturer. They shall correspond to one of the tire sizes designated for the vehicle by the vehicle manufacturer and shall be inflated to the pressure(s) recommended by the manufacturer for the vehicle in its unladen (curb mass) condition. In the case of M1 to N3 vehicles, some European countries allow the use of tires with a tread depth to as low as 1.6 mm, on any part of the tread.

The powertrain and exhaust system temperatures shall be within the normal operating range throughout each test run.

NOTE—Usually, a vehicle brought to its normal engine coolant temperature through moderate driving conditions is adequately conditioned for testing.

6.5 Operating Conditions

6.5.1 GENERAL CONDITIONS—The vehicle shall approach line AA with the path of its centerline following as closely as possible the centerline CC as specified in 6.5.2.1 to 6.5.2.3 as appropriate.

When the front of the vehicle reaches line AA, within ± 1.5 m, the throttle shall, as rapidly as possible, be opened as fully as will ensure maximum acceleration without operating kickdown (if any), and held until the rear of the vehicle reaches line BB; the throttle shall then be closed as rapidly as possible.

Any trailer which is not readily separable from the towing vehicles shall be ignored when considering the crossing of line BB.

If the vehicle is fitted with more than two-wheel drive, it shall be tested in the drive which is intended for normal road use.

If the vehicle incorporates equipment which is not normally in operation on the road, such as a concrete mixer, a compressor, etc., this equipment shall not be in operation during the test.

NOTE—It is recommended that supplementary measurements be made with the equipment operating.

6.5.2 SPECIAL CONDITIONS

- 6.5.2.1 Vehicles Without Transmission Range Selection—The vehicle shall approach line AA at a uniform vehicle speed corresponding to one of the following:
 - a. 50 km/h, or
 - b. An engine rotational speed equal to 3/4 of the speed, n, which is the rated engine speed, or
 - c. 3/4 of the engine maximum rotational speed allowed by the governor at full load conditions of the engine,

whichever is the lowest.

6.5.2.2 Manual Transmission Vehicle

- a. Approach Speed—The vehicle shall approach the line AA' at a steady vehicle speed corresponding to the lower of the following speed with a tolerance ±1 km/h, except where the controlling factor is engine speed the tolerance shall be the larger of ±2% or 50 rpm:
 - 1. 50 km/h;
 - The vehicle speed corresponding to an engine speed equal to three-quarters of the rated speed S in the case of vehicles of category M1, and in the case of vehicles of the other categories having an engine power not greater than 225 kW;
 - 3. The engine speed corresponding to an engine speed equal to half the rated engine speed S in the case of vehicles not belonging to category M1 and having an engine power greater than 225 kW.
- b. Choice of Gear Ratios for M1 and N1—Vehicles in categories M1 and N1 equipped with a manually operated gearbox having not more than four forward gear ratios shall be tested in second gear.

Vehicles in these categories equipped with a manually operated gearbox having more than four forward gear ratios shall be tested in second and third gears successively. Only overall gear ratios intended for normal road use are considered. The final reported value is that determined in 6.3.

38000035 VTA

SAE INTERNATIONAL

J1470 Reaffirmed NOV2013

If during the test in second gear, the engine speed exceeds the rated engine speed S, before the rear of the vehicle reaches the line BB, the test shall be repeated with the approach engine speed reduced by steps of 5% of S until the engine speed attained no longer exceeds S. If during the test in second gear, the approach engine speed has been reduced to the idle speed, and the engine attains the rated engine speed S before the rear of the vehicle reaches the line BB, then the test shall be performed only in third gear and the relevant measurement reported as in 7.5.

However, vehicles in category M1 having more than four forward gears and equipped with an engine developing a maximum power greater than 140 kW, and whose permissible maximum-power/ maximum-mass ratio exceeds 75 kW/ (1 metric ton) 1.2 ton, or 62.5 kW/ ton may be tested in third gear only, provided that the vehicle speed change during the acceleration is greater than 11 km/h over a distance of 20 m plus the vehicle length.

c. Choice of Gear Ratios in Categories other than M1, N1—Vehicles other than those in categories M1 and N1 in which the total number of forward gear ranges is x (including the ranges obtained by combining the transmission ratios and the gear ratios added by means of an auxiliary transmission or multiple ratio drive axle) shall be tested, sequentially, using the range equal to or higher than x/n, where n=2 for vehicle having a rated engine power not greater than 225 kW and n=3 for vehicles having a rated engine power greater than 225 kW.

The initial test will be carried out using the range which is gear (x/n) or the next higher gear range if (x/n) in not an integer. The testing shall continue from the gear (x/n) to the next higher gear.

Shifting up gear ranges from (x/n) shall be terminating when in the gear X in which the rated engine speed is reached just before the rear of the vehicle has passed the line BB'.

<u>Sample Calculation for Testing</u>—A vehicle has an engine with a power rating of 230 kW and the drivetrain has 16 forward ranges available consisting of a primary transmission with 8 ratios and an auxiliary transmission with 2 ratios. The 230 kW engine has a divisor of 3, then calculation is $(x/n) = (8 \times 2)/3 = 16/3 = 5-1/3$. The initial test gear range is 6th (includes the ratios from both the main transmission and auxiliary which is 6th out of the 16 total gear ranges), with the next gear range is 7th up to range X.

In the case of vehicles having different overall gear ratios (including a different number of gear ranges), the representativity of the type by the test vehicle is determined as follows:

- 1. If the highest sound pressure level is obtained between the range x/n and range X, the vehicle selected is deemed representative of its type for those vehicles which include the same gear ratios in the same ranges.
- 2. If the highest sound pressure level is obtained at range x/n, the vehicle selected is deemed representative of its type only for those vehicles which have a lower overall gear ratio at range x/n.
- 3. If the highest sound pressure level is obtained at range X, the vehicle selected is deemed representative of its type only for those vehicles which have a higher overall gear ratio than the gear ratio at range X.

However the vehicle, under test, is deemed representative of its type also, if at the applicant's request, the tests are extended over more ratios and the highest sound pressure level is obtained at a ratio that is between the extreme ratios tested.

6.5.2.3 Automatic Transmission Vehicle—Two cases may occur:

- a. Vehicles without a manual selector shall be tested at various uniform approach speeds of 30, 40, and 50 km/h or at 3/4 of the maximum vehicle speed specified by the manufacturer if this value is lower. The condition yielding the highest sound pressure level , as determined in 6.3, shall be reported.
- b.1. Automatic Transmission Vehicles Categories M and N—If a vehicle is equipped with an automatic transmission with a manual selector, conduct the test with the selector in the position recommended by the manufacturer for normal driving.

The vehicle shall approach the line AA' at a steady speed corresponding to the lower of the following speeds with a tolerance ± 1 km/h; in cases where the controlling factor is engine speed, the tolerance shall be the larger of $\pm 2\%$ or ± 50 rpm:

- 1. 50 km/h;
- The vehicle speed corresponding to 3/4 of the rated engine speed, S, in the case of vehicles of category M1, and in the case of vehicles of the other categories having an engine power not greater than 225 kW;
- 3. The speed corresponding to half the rated engine speed S in the case of vehicles not belonging to category M1 and having an engine power greater than 225 kW.
- b.2. Prevention of Downshift—Some vehicles equipped with an automatic transmission (two or more discrete ratios) may downshift to a gear ratio not normally used in urban driving, as defined by the manufacturer. A gear ratio not used for urban driving includes a gear ratio intended for slow movement, parking or braking. In these cases, the operator may select any of the following modifications:
 - 1. Increase the vehicle speed v of the vehicle to a maximum of 60 km/h in order to avoid such a downshift.
 - 2. Maintain the vehicle speed v at 50 km/h and limit the fuel supply to the engine to 95% of the supply necessary for full load¹. This condition is considered to be satisfied when:
 - a. In the case of a spark-ignition engine, the angle of the throttle opening is 90% of the full angle.
 - b. In the case of a compression-ignition engine, the fuel supply to the injection pump is limited to 90% of its maximum supply.
 - 3. Establish and use an electronic control that will prevent a downshift to gears lower than those used in normal urban driving as defined by the manufacturer.

In all cases, the special selector's positions for slow movements, parking, or braking shall be excluded.

If the vehicle is fitted with an auxiliary manual transmission or multi-gear axle, the position used for normal urban driving shall be used.

7. General Comments

7.1 It is recommended that persons technically trained and experienced in current sound measurement techniques select the test instrumentation and conduct the tests.

^{1.} This condition shall be satisfied in the case of a spark-ignition engine when the angle of the butterfly valve is 90% of full travel, and in the case of a compression-ignition engine when the movement of the feed-rack of the injection pump is limited to 90% of its stroke.

SAE INTERNATIONAL

- 7.2 When making sound level measurements, not more than one person other than the observer reading the meter shall be within 15 m of the vehicle or microphone, and that person shall be directly behind the observer reading the meter, on a line through the microphone and the observer.
- **7.3** Proper use of all test instrumentation is essential to obtain valid measurements. Operating manuals or other literature furnished by the instrument manufacturer should be referred to for both recommended operation of the instrument and precautions to be observed. Specific items to be considered are:
- 7.3.1 The type of microphone, its directional response characteristics, and its orientation relative to the ground plane and the sound source.
- 7.3.2 The effects of ambient weather conditions on the performance of all instruments (for example, temperature, relative humidity, and barometric pressure).
- 7.3.3 Proper signal levels, terminating impedances, and cable lengths on multi-instrument measurement systems.
- 7.3.4 Proper acoustical calibration procedures, to include the influence of extension cables, etc. Field calibration shall be made immediately before and after each test sequence. Internal calibration is acceptable for field use, provided that external calibration using a sound level meter calibrator meeting the requirements of ANSI S1.40-1984 is accomplished immediately before and after field use.
- 7.4 Many tachometers in common use have an appreciable time lag in response during vehicle acceleration. The use of such a tachometer without suitable correction could result in the attainment of higher than intended engine speed and possible effects on measured sound levels.
- 7.5 Vehicles used for tests shall not be operated in a manner such that the break-in procedure specified by the manufacturer is violated.
- **7.6** It should be recognized that variations in measured sound levels may occur due to variations in test site, ambient weather differences (temperature, wind, and their gradients), test equipment differences, and inherent differences between nominally identical vehicles.
- 7.7 Vehicles with diesel engines should be tested using Number 1D or Number 2D diesel fuel possessing a cetane rating from 42 to 50 inclusive (recommended by the manufacturer for use by the purchaser.)
- **7.8** Vehicles with gasoline engines shall use the grade of gasoline recommended by the manufacturer for use by the purchaser.
- 7.9 Measurement Uncertainty—Measurements made in conformity with this document results in levels that are influences by climatic conditions. The climatic conditions can affect the performance of the vehicle powertrain, modify the level from the tires, and disturb the propagation path of the sound. In addition, the use of the asphalt test surface specified in ISO 10844 has reduced, but not eliminated, the variations traditionally encountered from different site. Tests of a vehicle at the same site, in similar climatic conditions will result in sound levels that are within ±1 dB. However, testing over the entire range of temperature and wind conditions allowed in this document may result in greater variation. This document encourages the measurement and reporting of additional environmental conditions, to develop a better understanding of the effect of these factors on the measurement. The test temperature range and the wind speed limit as well as the tolerance on vehicle operation provides some reduction of the variations. See appendix A.

Page 11 of 15

8. Test Report

- 8.1 In the event preparation of a formal test report is required, the report shall contain the following information:
- 8.1.1 Reference to this document;
- 8.1.2 Details of the test site, site orientation, the testing surface conditions and weather conditions including wind speed and air temperature. Wind direction, barometric pressure, humidity and track surface temperature are optional measurements and should also be recorded if available date, and test personnel;
- 8.1.3 The measurement equipment (including windscreen);
- 8.1.4 The measured A-weighted sound pressure level typical of the background noise;
- 8.1.5 The identification of the vehicle, its engine, its transmission system including available transmission ratios, size and type of tires, tire pressure, tire tread depth, test mass, and vehicle length;
- 8.1.6 The transmission gears or gear ratios used during the test;
- 8.1.7 The vehicle and engine speeds at the beginning of the period of acceleration, and the location of the beginning of the acceleration;
- 8.1.8 The vehicle speed and engine speed at the end of the acceleration;
- 8.1.9 The auxiliary equipment, where appropriate, and its operating conditions; and
- 8.1.10 The A-weighted sound pressure level values measured, from all valid runs, listed according to the side of the vehicle and the direction of the vehicle movement on the test site.

9. Notes

9.1 Marginal Indicia—The change bar (I) located in the left margin is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. An (R) symbol to the left of the document title indicates a complete revision of the report.

PREPARED BY THE SAE VEHICLE SOUND LEVEL FORUM COMMITTEE AND THE SAE LIGHT VEHICLE EXTERIOR SOUND LEVEL STANDARDS COMMITTEE

SAE INTERNATIONAL

APPENDIX A

RATIONALE

Preface—SAE J1470 has been changed to recognize the updates that have occurred in the ISO 362 procedure. While the procedure conforms to the test cycles used in the majority of the European countries as well as the United States State and Local requirements, it is important that the actual regulations of a specific country be reviewed to insure that this procedure meets the specific country law.

This procedure compliments other SAE procedures that measure the vehicle under maximum operating mode compared to this more typical urban driving cycle which utilizes intermediate gear ratios. The procedure does not include motorcycles which are covered by other SAE procedures.

- 1. Scope—This section has been updated to highlight the importance of the procedure being used in the manufacturing and official testing facilities but acknowledges the limitations of the use of a local street or large asphalt areas such as routine parking lot construction facilities. This section also indicates that the motorcycle procedure developed by the SAE Motorcycle committee is more representative of actual use than the cycle used in the ISO procedure. Therefore, the ISO section for motorcycles is not included in this SAE procedure.
- 2. Applicable Documents—This section has been expanded and updated to include the recent data contained in engineering reports and test procedures that are representative of current technology for vehicle passby testing. Section 3.1 adds reference to a SAE report for a cooperative research project comparing the traditional SAE and ISO surface. The ISO surface tends to de-emphasize the tire/road noise during the acceleration compared to the sealed SAE surface. 2.1.5 adds the ISO reference for the test surface construction and performance measurements.

2.1.6—Adds reference to the common market regulation which is the pattern for some of the vehicle gear selector criteria.

3. Definitions—This section contains the modified definitions that clarify the terminology specific to the procedure that were not used in previous procedures or have a specific meaning to the procedure.

3.1—Modified the automatic downshift definition introducing the idea for allowing the vehicle manufacturer to develop data verifying the appropriate urban gear for the powertrain being tested.

3.4—The intermediate result term introduced to identify the value determined from one or more series of runs to be combined for the reported value. The procedure requires multiple runs in some cases prior to determining a reported value.

3.5—Defines the mass of the vehicle configuration that is being tested, and notes the difference between U.S. and British terms for mass.

3.6—Clarifies the engine speed used to determine the approach and conditions of the test run. For use in U.S. jurisdiction, it is the same as SAE net rated hp engine speed. In addition there is a note regarding the difference between "net rated RPM" and "governed engine speed".

3.7—Defines the vehicle categories at function use, capacity, and mass. These classifications determine the test protocol to be used in the measurements.

4. Instrumentation for Acoustical Measurements—This section has been modified to include the new requirements for verifying the conformance of the acoustic equipment. The intent and the effect is to improve the calibration practice that identify a potential problem in the measurement equipment. It also includes the recommended sampling rate for equipment that used a digital processing technique. This section also adds the requirements for the accuracy of the meteorological equipment that reports the variables that have been shown to effect the sound measurement.

4.1—Adds the requirement for use of a wind screen during the measurement and limits the allowable influence of the wind screen on the measurement. Engineering data supports the need for wind protection even at the limited wind speed allowed. Use of the windscreen helps improve the repeatability of the measurements.

This section also requires a verification of the acoustical test equipment. The requirement allows for calibration by a qualified laboratory. The requirement forces a reference to a traceable standard. It is not so rigid as to force a government approval but allows any laboratory meeting the quality and standards tractability to perform the verification. This section further specifies the need for a digital sampling rate, fast enough to maintain the accuracy of the instrument system.

4.2—Instrument specifications defines the performance expected over the range of measurements. New analog, digital, and hybrid instruments have improved measurement techniques. The devices may have extended ranges that exceed the range typically used and the single reference to full scale or a (%) of full scale may oversimplify the measurement accuracy. The user must be knowledgeable of the instruments used and verify the performance in the range used.

5.1 Test Site—The test surface in all SAE procedures has been specified as a highly reflective uniform asphalt plane. The ISO committee has developed a new surface specification that reduces some of the variation that has occurred in the test sites used. The ISO 10844 construction material and installation technique as well as the performance criteria of macrotexture, residual voids, and absorption characteristics have improved on the site uniformity. However, the SAE surface specification with the application of a surface sealer provides a similar uniformity in the test site surface. The surface texture for the ISO specification has resulted in a reduction in the tire road noise component of the vehicle noise. As a result, the ISO surface is better for measurement of vehicles at lower regulated levels where the objective is to measure powertrain noise and de-emphasize the tire/ road noise component.

5.1.c—This paragraph notes the need for a special surface construction when applying this procedure for vehicles exported to some countries. Because of the surface characteristics, the tire/road noise is often lower on this surface than the SAE surface. The performance criteria of the ISO 10844 minimizes the test surface absorption. The ISO surface with an absorption coefficient of less than 0.1 can be characterized as comparable to the SAE sealed surface which also has an absorption coefficient of approximately 0.04. The correlation of the surfaces was shown in SAE Noise and Vibration Conference 951361.

5.1.d—This paragraph requires the surface to be constructed in a uniform plane. A measurement area with surface flatness deviations tends to increase run-to-run variations.

5.2—The recommendation for testing in a limited temperate range is the result of years of data collection where individual product lines are significantly influenced by temperature changes. The lower limit allows fairly nonrestricted testing but recognizes the vehicle performance and instrument changes at the lower temperatures. Again, this procedure does not prevent measurement outside this range but makes test personnel aware of the need to consider temperature in the measurement variability. The recommendation for measuring the other atmospheric quantities again raises the need to be aware of the typical measurement environment. It does not prevent measuring sound level in any conditions.

6. Test Procedure—This section includes a number of major changes that modified the operating conditions of the vehicle to include the current practice in many countries for vehicle approval testing.

6.1—The microphone position and height tolerance were added to encourage an actual measurement of the locations and discourage rough approximation that could alter measurements. Recent studies verify the significance of site/transducer geometry.

6.2—The procedure adds 2 runs to the required measurements which help verify the repeatability of the test runs.

6.3—This section along with the new requirements on the testing, attempt to obtain a better representative number without an overly complex process. The measurement outdoors of a variable source are influenced by a number of uncontrollable factors. This method improves the measurement by helping mitigate some of the variables. The addition of the 1 minute, added to SAE J986 in the late 60's, helps reduce some of the engine temperature increases that have been observed during repeated test runs.

The procedure requires testing some vehicles more than once typically in multiple gears or at multiple speeds. To distinguish between a result from one series of runs from the final result, the term "intermediate result" has been used. The reported test results are a combination or selection of intermediate results as identified in 6.3, a, b, c, and d.

6.4—Specifies the mass of the vehicle and conditions of the powertrain and related components. This section also defines the conditions of the vehicle tire tread and inflation pressure. The reduced tire tread depth decrease the dominance of tire noise in the powertrain measurement cycle for products being designed for some non-U.S. markets.

6.5—This section is completely revised to identify the vehicle operating modes currently representative of urban driving. This cycle allows for testing in an intermediate ratio or ratios that are typical of urban traffic. The concept of using intermediate gears preclude the use of the lowest range in an automatic transmission. This procedure offers an option to be used to prevent the new automatic transmission (with electronic controls) from downshifting into the lowest range, highest ratio or other ratios not normally used in urban driving.

In 6.5.2.2.c, the (n) values indicated (n=2 and n=3) were determined from earlier procedure development work. The exact origin has not been explained or reviewed by the latest ISO Working Group.

8. Test Report—This section relates the information that should be contained in the final report of the total vehicle test. The test technician must determine the importance of this information, to the measurements taken. Site orientation, environmental conditions, vehicle performance, and instrumentation used, all help identify the vehicle test condition during the test conducted. This rigorous test identification can help explain sound level changes on identical products.

A.1 Measurement Uncertainty—This document has been modified, in relation to ISO 362:1997, to improve the repeatability and reproducibility of the measurements. The procedure still does not require a higher level of precision for some test parameters, because there is insufficient data to justify tighter tolerance or limits on these requirements.

The use of the asphalt surfacing specified in ISO 10844 has reduced the variation typical in earlier measurements. However, ISO and Society of Automotive Engineers (SAE) test programs, have indicated that there is still some variation in sound level measurements of identical vehicles on surfaces meeting the site qualifications. In addition to the site variation, there are vehicle and measurement variations attributable to climatic conditions. A reduction of the temperature range to 10 $^{\circ}$ C to 30 $^{\circ}$ C generally produces better agreement in the results. Likewise one should be aware that temperature, humidity and atmospheric pressure can have a significant influence on engine performance and microphone response. There is also a level of uncertainty introduced by the wind disturbance of the propagation path.

More precise calibration, better instrument specifications, and test operation criteria in this revised document reduces the variations in sound levels. Also, the variations that will occur may be easier to explain since the document now requires or recommends important meteorological parameters be recorded. However, there remains variations that cannot be accounted for within the allowed ranges. Tests from one site to another and during different, but accepted, climatic conditions will normally vary around ± 1 dB, but in extreme cases, variations of ± 2 dB may occur. Test data of identical products should be evaluated taking into account these factors if the measurements are found to be out of the range that would be anticipated from previous measurements.

NOTE—Some regulatory organizations specify a reduction of the measured level, by 1 dB, to account for this type of variation. However, such modification of measured levels are out of the scope of the ISO engineering standards. The variations also support the idea of rounding the measured level to the nearest integer in cases where the test parameters are not closely controlled. Engineering comparisons where meteorological and other parameters are restricted or controlled, will reduce this variation to where reporting levels to the nearest 0.1 dB is significant.

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

E/ECE/324) E/ECE/TRANS/505) May 23, 2012

ANS/505 Rev.1/Add.50/Rev.2/Amend.1

STATUS OF UNITED NATIONS REGULATION

ECE 51-02

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF:

MOTOR VEHICLES HAVING AT LEAST FOUR WHEELS WITH REGARD TO THEIR NOISE EMISSIONS

Incorporating:

02 series of amendments Supplement 1 to the 02 series of amendments Corr. 1 to the 02 series of amendments Corr. 2 to the 02 series of amendments Corr. 3 to the 02 series of amendments Supplement 2 to the 02 series of amendments Corr. 1 to Supplement 3 to the 02 series of amendments Supplement 4 to the 02 series of amendments Supplement 5 to the 02 series of amendments Supplement 5 to the 02 series of amendments Supplement 6 to the 02 series of amendments Supplement 7 to the 02 series of amendments Supplement 7 to the 02 series of amendments Supplement 8 to the 02 series of amendments Date of Entry into Force: 18.04.95 Date of Entry into Force: 05.05.96 Dated: 15.11.96 Dated: 11.03.98 Dated: 28.04.11 Date of Entry into Force: 07.02.99 Date of Entry into Force: 17.11.99 Dated: 07.03.01 Date of Entry into Force: 02.02.07 Date of Entry into Force: 18.06.07 Date of Entry into Force: 03.02.08 Date of Entry into Force: 30.01.11 Dated: 14.03.12 Date of Entry into Force: 13.04.12

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

E/ECE/324 E/ECE/TRANS/505 May 23, 2012

) Rev.1/Add.50/Rev.2/Amend.1

UNITED NATIONS AGREEMENT

CONCERNING THE ADOPTION OF UNIFORM TECHNICAL PRESCRIPTIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES AND THE CONDITIONS FOR RECIPROCAL RECOGNITION OF APPROVALS GRANTED ON THE BASIS OF THESE PRESCRIPTIONS ^(*)

(Revision 2, including the amendments entered into force on October 16, 1995)

Addendum 50: Regulation No. 51

Revision 2 – Amendment 1

Incorporating all valid text up to:

02 series of amendments - Date of entry into force: April 18, 1995 Supplement 1 to the 02 series of amendments - Date of entry into force: May 5, 1996 Corrigendum 1 to the 02 series of amendments referred to in Depositary Notification C.N.25.1997.TREATIES-16 of February 26, 1997 Corrigendum 2 to the 02 series of amendments subject of Depositary Notification C.N.303.1998.TREATIES-70 August of 6, 1998 Corrigendum 3 to the 02 series of amendments referred to in Depositary Notification C.N.157.2011.TREATIES-2 of April 28, 2011 Supplement 2 to the 02 series of amendments - Date of entry into force: February 7, 1999 Supplement 3 to the 02 series of amendments - Date of entry into force: November 17, 1999 Corrigendum 1 to Supplement 3 to the 02 series of amendments subject of Depositary Notification C.N.557.2001.TREATIES-1 dated June 5, 2001 Supplement 4 to the 02 series of amendments - Date of entry into force: February 2, 2007 Supplement 5 to the 02 series of amendments - Date of entry into force: June 18, 2007 Supplement 6 to the 02 series of amendments - Date of entry into force: February 3, 2008 Supplement 7 to the 02 series of amendments - Date of entry into force: January 30, 2011 Corrigendum 1 to Revision 2 of the Regulation – Date of entry into force: March 14, 2012 Supplement 8 to the 02 series of amendments - Date of entry into force: April 13, 2012

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF MOTOR VEHICLES HAVING AT LEAST FOUR WHEELS WITH REGARD TO THEIR NOISE EMISSIONS 1

^(*) Former title of the Agreement:

Agreement Concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts, done at Geneva on March 20, 1958.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

REGULATION NO. 51

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF MOTOR VEHICLES HAVING AT LEAST FOUR WHEELS WITH REGARD TO THEIR NOISE EMISSIONS

CONTENTS

- 1. Scope
- 2. Definitions
- 3. Application for approval
- 4. Markings
- 5. Approval
- 6. Specifications
- 7. Modifications and extension of approval of a vehicle type
- 8. Conformity of production
- 9. Penalties for non-conformity of production
- 10. Production definitively discontinued
- 11. Transitional provisions
- 12. Names and addresses of technical services responsible for conducting approval tests and of Type Approval Authorities

COUNTRY	:E.C.I	E. © InterRegs Ltd 2012
ORIGINAL	:UNIT	ED NATIONS of January 11, 1983
ANNEXES		
Annex 1	÷.,	Communication concerning the approval or extension or refusal or withdrawal of approval or production definitely discontinued of a vehicle type with regard to its noise emission pursuant to Regulation No. 51
Annex 2	-	Arrangements of the approval mark
Annex 3	-	Methods and instruments for measuring the noise made by motor vehicles (Measurement Method A)
		Appendix: Measuring positions for vehicles in motion
Annex 4	-	Classification of vehicles
Annex 5	-	Silencing systems containing acoustically absorbing fibrous materials
		Appendix: Figure 3
Annex 6	-	Compressed air noise
		Appendix: Figure 1
Annex 7	-	Checks on conformity of production
Annex 8	-	Specifications for the test site
Annex 9	<u>—</u>	Vehicle Test Data pursuant to Measurement Method B
Annex 10	-	Methods and instruments for measuring the noise made by motor vehicles (Measurement Method B)

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

REGULATION NO. 51

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF MOTOR VEHICLES HAVING AT LEAST FOUR WHEELS WITH REGARD TO THEIR NOISE EMISSIONS

1. SCOPE

This Regulation applies to vehicles of Category M and N⁽¹⁾ with regard to noise.

2. DEFINITIONS

For the purposes of this Regulation,

- 2.1. "Approval of a vehicle" means the approval of a vehicle type with regard to noise;
- 2.2. "Vehicle type" means a category of motor vehicles which do not differ in such essential respects as:
- 2.2.1. the shape or materials of the bodywork (particularly the engine compartment and its soundproofing);
- 2.2.2. the length and width of the vehicle;
- 2.2.3. the type of engine (positive or compression ignition, two- or four-stroke, reciprocating or rotary piston), number and capacity of cylinders, number and type of carburettors or injection system, arrangement of valves, rated maximum power and corresponding engine speed(s), or the type of electric motor;
- 2.2.4. the transmission system, the number of gears and ratios;
- 2.2.5. the noise reduction system as defined in the following Paragraphs 2.3 and 2.4.
- 2.2.6. Notwithstanding the provisions of Paragraphs 2.2.2. and 2.2.4., vehicles other than those in Categories M_1 and N_1 ⁽¹⁾ having the same type of engine and/or different overall gear ratios, may be regarded as vehicles of the same type.

However, if the above differences provide for a different test method, these differences are to be considered as a change of type.

- 2.3. "Noise reduction system" means a complete set of components necessary for limiting the noise made by a motor vehicle and its exhaust;
- 2.4. "Noise reduction systems of different types" means noise reduction systems which differ in such essential respects as:
- 2.4.1. that their components as specified in Paragraph 4.1., bear different trade names or marks;
- 2.4.2. that the characteristics of the materials constituting a component are different or that the components differ in shape or size, a change in the plating procedure (galvanisation, aluminium coating, etc.) is not deemed to produce a difference of type;

⁽¹⁾ As defined in the Consolidated Resolution of the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev.2, Paragraph 2.

1000046 VTA

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

- 2.4.3. that the operating principles of at least one component are different;
- 2.4.4. that their components are assembled differently;
- 2.4.5 that the number of the intake and/or exhaust silencers is different.
- **2.5. "Noise reduction system component"** means one of the individual constituent parts whose assembly constitutes the noise reduction system.

These components are, in particular: the exhaust pipings, the expansion chamber(s), the silencer(s) proper.

- 2.5.1. The air filter is considered as a component only if its presence is essential to ensure observance of the prescribed sound-level limits.
- 2.5.2. Manifolds are not considered components of the noise reduction system.
- **2.6.** "Maximum mass" means the technically permissible maximum mass declared by the vehicle manufacturer (this mass may be greater than the maximum mass authorised by the national administration).
- 2.7. "(Rated) engine power" means the engine power expressed in kW (ECE) and measured by the ECE method pursuant to Regulation No. 85.
- **2.8.** "Mass of a vehicle in running order (m_{Ro}) " means the mass of an unladen vehicle with bodywork, and with coupling device in the case of a towing vehicle, or the mass of the chassis with cab if the manufacturer does not fit the bodywork and/or coupling device, including coolant, oils, 90% of fuel, 100% of other liquids except used waters, tools, spare wheel, driver (75 kg) and, for buses and coaches, the mass of the crew member (75 kg) if there is a crew seat in the vehicle.
- **2.9. "Rated engine speed, S"** means the declared engine speed in min⁻¹ (rpm) at which the engine develops its rated maximum net power pursuant to Regulation No. 85.

If the rated maximum net power is reached at several engine speeds, the highest engine speed shall be used.

- **2.10.** "Power to mass ratio index (PMR)" means a numerical quantity (see Annex 10, Paragraph 3.1.2.1.1.) with no dimension used for the calculation of acceleration.
- 2.11. "Reference point" means a point which is defined as follows:
- 2.11.1. Category M₁, N₁:
 - (a) for front engine vehicles: the front end of the vehicle;
 - (b) for mid engine vehicles: the centre of the vehicle;
 - (c) for rear engine vehicles: the rear end of the vehicle.
- 2.11.2. Category M₂, M₃, N₂, N₃:

the border of the engine closest to the front of the vehicle.

TITLE: Noise Emissions

Jul/2012

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- 2.12. "Engine" means the power source without detachable accessories.
- **2.13. "Target acceleration"** means an acceleration at a partial throttle condition in urban traffic and is derived from statistical investigations.
- 2.14. "Reference acceleration" means the required acceleration during the acceleration test on the test track.
- **2.15.** "Gear ratio weighting factor k" means a dimensionless numerical quantity used to combine the test results of two gear ratios for the acceleration test and the constant speed test.
- **2.16.** "Partial power factor k_p " means a numerical quantity with no dimension used for the weighted combination of the test results of the acceleration test and the constant speed test for vehicles.
- 2.17. "Pre-acceleration" means application of acceleration control device prior to AA' for the purpose of achieving stable acceleration between AA' and BB'.
- 2.18. "Locked gear ratios" means the control of transmission such that the transmission gear cannot change during a test.

2.19. "Design family of silencing system or silencing system components"

Silencing systems or components thereof belong to the same design family if all of the following characteristics are the same:

- The exhaust gases in contact with the absorbing fibrous material have net gas flow through this material: (yes or no);
- (b) The type of the fibres (e.g. basalt wool, biosil wool, glass wool, E-type wool, etc.);
- (c) Binder material specifications (if applicable);
- (d) Average fibre dimensions (thickness, length);
- Minimum bulk material packing density (kg/m³);
- (f) Maximum contact surface between the gas flow and the absorbing material (e.g. perforation open area).

3. APPLICATION FOR APPROVAL

- **3.1.** The application for approval of a vehicle type with regard to noise shall be submitted by its manufacturer or by his duly accredited representative.
- **3.2.** It shall be accompanied by the undermentioned documents and the following particulars in triplicate:
- 3.2.1. a description of the vehicle type with regard to the items mentioned in Paragraph 2.2. above. The numbers and/or symbols identifying the engine type and the vehicle type shall be specified;
- 3.2.2. a list of the components, duly identified, constituting the noise reduction system;

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.2.3. a drawing of the assembled noise reduction system and an indication of its position on the vehicle;
- 3.2.4. detailed drawings of each component to enable it to be easily located and identified, and a specification of the materials used.
- **3.3.** In the case of Paragraph 2.2.6. the single vehicle, representative of the type in question, will be selected by the technical service conducting approval tests, in accordance with the vehicle manufacturer, as that with the lowest mass in running order with the shortest length and following the specification laid down in Paragraph 3.1.2.3.2.3. in Annex 3.
- **3.4.** At the request of the technical service conducting approval tests, the vehicle manufacturer shall, in addition, submit a sample of the noise reduction system and an engine of at least the same cylinder capacity and rated maximum power as that fitted to the vehicle in respect of which type-approval is sought.
- **3.5.** The competent authority shall verify the existence of satisfactory arrangements for ensuring effective control of the conformity of production before type approval is granted.

4. MARKINGS

- **4.1.** The components of the noise reduction system, excluding fixing hardware and piping, shall bear:
- 4.1.1. the trade name or mark of the manufacturer of the noise reduction system and of its components; and
- 4.1.2. the manufacturer's trade description;
- 4.2. These markings shall be clearly legible and be indelible even after fitting.
- **4.3.** A component may carry several approval numbers if it has been approved as component of several replacement silencing systems.

5. APPROVAL

- 5.1. Type approval shall only be granted if:
 - (a) the vehicle type meets the requirements of Paragraphs 6 and 7 below when tested according to Measurement Method A of Annex 3, and
 - (b) starting at July 1, 2007 and for a maximum period of two years, the results of the test run of that vehicle type in accordance with the Measurement Method B of Annex 10 have been added to the test report in Annex 9 and communicated to the European Commission and those Contracting Parties that express an interest in receiving the data. This does not include any tests done in connection with the extension of existing approvals according to Regulation No. 51. Furthermore, for the purpose of this monitoring procedure a vehicle is not considered to be a new type if the vehicle differs only in respect to Paragraphs 2.2.1 and 2.2.2.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

- **5.2.** An approval number shall be assigned to each type approved. Its first two digits (at present 02 corresponding to the 02 series of amendments which entered into force on April 18, 1995) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party may not assign the same number to the same vehicle type equipped with another type of noise reduction system or to another vehicle type.
- **5.3.** Notice of approval or of extension or of refusal or withdrawal of approval or of production definitively discontinued of a vehicle type pursuant to this Regulation shall be communicated to the Parties to the Agreement applying this Regulation, by means of a form conforming to the model in Annex 1 to this Regulation.
- **5.4.** There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation an international approval mark consisting of:
- *5.4.1.* a circle surrounding the Letter "E" followed by the distinguishing number of the country which has granted approval ⁽¹⁾;
- 5.4.2. the number of this Regulation, followed by the Letter "R", a dash and the approval number to the right of the circle prescribed in Paragraph 5.4.1.
- **5.5.** If the vehicle conforms to a vehicle type approved, under one or more other Regulations annexed to the Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in Paragraph 5.4.1. need not be repeated; in such a case the regulation and approval numbers and the additional symbols of all the Regulations under which approval has been granted in the country which has granted approval under this Regulation shall be placed in vertical columns to the right of the symbol prescribed in Paragraph 5.4.1.
- 5.6. The approval mark shall be clearly legible and be indelible.
- 5.7. The approval mark shall be placed close to or on the vehicle data plate affixed by the manufacturer.
- 5.8. Annex 2 to this Regulation gives examples of arrangements of the approval mark.

⁽¹⁾ The distinguish numbers of the Contracting Parties to the 1958 Agreement are reproduced in Annex 3 to Consolidated Resolution on the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev.2.

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

6. SPECIFICATIONS

6.1. General Specifications

- 6.1.1. The vehicle, its engine and its noise reduction system shall be so designed, constructed and assembled as to enable the vehicle, in normal use, despite the vibration to which it may be subjected, to comply with the provisions of this Regulation.
- 6.1.2. The noise reduction system shall be so designed, constructed and assembled as to be able to reasonably resist the corrosive phenomena to which it is exposed having regard to the conditions of use of the vehicle.

6.2. Specifications Regarding Sound Levels

- 6.2.1. Methods of Measurement
- 6.2.1.1. The noise made by the vehicle type submitted for approval shall be measured by the two methods described in Annex 3 to this Regulation for the vehicle in motion and for the vehicle when stationary ⁽¹⁾; in the case of a vehicle where an internal combustion engine does not operate when the vehicle is stationary, the emitted noise shall only be measured in motion.

Vehicles having a maximum permissible mass exceeding 2 800 kg shall be subjected to an additional measurement of the compressed air noise with the vehicle stationary in accordance with the specifications of Annex 6, if the corresponding brake equipment is part of the vehicle.

6.2.1.2. The two values measured in accordance with the provisions of Paragraph 6.2.1.1. above shall be entered in the test report and on a form conforming to the model in Annex 1 to this Regulation.

The values measured as specified in Paragraph 6.2.1.1. above must be recorded in a test report and a certificate corresponding to the model shown in Annex 1.

⁽¹⁾ A test is made on a stationary vehicle in order to provide a reference value for administrations which use this method to check vehicles in use.

ORIGINAL : UNITED NATIONS of January 11, 1983

6.2.2. Sound level limits

6.2.2.1. Subject to the provisions of Paragraph 6.2.2.2. below, the sound level of vehicle types, as measured by the method described in Paragraph 3.1. of Annex 3 to this Regulation, shall not exceed the following limits:

	Vehicle categories	Limit values (dB(A))
6.2.2.1.1.	Vehicles used for the carriage of passengers and capable of having not more than nine seats, including the driver's seat	74
6.2.2.1.2.	Vehicles used for the carriage of passengers having more than nine seats, including the driver's seat, and a maximum authorized mass of more than 3.5 t	
6.2.2.1.2.1.	with an engine power less than 150 kW (ECE)	78
6.2.2.1.2.2.	with an engine power of 150 kW (ECE) or above	80
6.2.2.1.3.	Vehicles used for the carriage of passengers having more than nine seats, including the driver's seat; vehicles used for the carriage of goods	
6.2.2.1.3.1.	with a maximum authorized mass not exceeding 2 t	76
6.2.2.1.3.2.	with a maximum authorized mass greater than 2 t but not exceeding 3.5 t	77
6.2.2.1.4.	Vehicles used for the transport of goods with a maximum authorized mass exceeding 3.5 t	
6.2.2.1.4.1.	with an engine power less than 75 kW (ECE)	77
6.2.2.1.4.2.	with an engine power of 75 kW (ECE) or above but less than 150 kW (ECE)	78
6.2.2.1.4.3.	with an engine power of 150 kW (ECE) or above	80

6.2.2.2. However,

- 6.2.2.2.1. For the vehicle types mentioned in Paragraphs 6.2.2.1.1. and 6.2.2.1.3. equipped with a compression-ignition and direct-injection internal combustion engine, the limit values shall be increased by 1 dB(A);
- 6.2.2.2.2. For vehicle types designed for off-road ⁽¹⁾ use and with a maximum authorised mass above 2 t, the limit values shall be increased:
- 6.2.2.2.2.1. by 1 dB(A) if they are equipped with an engine having a power of less than 150 kW (ECE);
- 6.2.2.2.2.2. by 2 dB(A) if they are equipped with an engine having a power of 150 kW (ECE) or above.
- 6.2.2.2.3. For vehicle types mentioned in Paragraph 6.2.2.1.1. fitted with a gear box having more than four forward gears and equipped with an engine developing a maximum power greater than 140 kW (ECE) and having a maximum-power/maximum-mass ratio grater than 75 kW/t, the limit values shall be increased by 1 dB(A), if the speed at which the rear of the vehicle passes the Line BB' in third gear is greater than 61 km/h.

⁽¹⁾ As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev.2, Paragraph 2.

34888849 VTA

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- 6.3. Specifications Regarding Exhaust Systems Containing Fibrous Materials
- 6.3.1. Requirements of Annex 5 shall be applied.
- 7. MODIFICATION AND EXTENSION OF APPROVAL OF A VEHICLE TYPE
- **7.1.** Every modification of the vehicle type shall be notified to the Type Approval Authority which approved the vehicle type. The department may then either:
- 7.1.1. Consider that the modifications made are unlikely to have an appreciable adverse effect and that in any case the vehicle still complies with the requirements, or
- 7.1.2. Require a further test report from the technical service responsible for conducting the tests.
- **7.2.** Confirmation or refusal of approval, specifying the alterations shall be communicated by the procedure specified in Paragraph 5.3. above to the Parties to the Agreement applying this Regulation.
- **7.3.** The competent authority issuing the extension of approval shall assign a series number for such an extension and inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in Annex 1 to this Regulation.

8. CONFORMITY OF PRODUCTION

- **8.1.** Vehicles approved to this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements set forth in Paragraphs 6 above.
- 8.2. In order to verify that the requirements of Paragraph 8.1. are met, suitable controls of the production shall be carried out.
- 8.3. The holder of the approval shall in particular
- 8.3.1. ensure existence of procedures for the effective control of the quality of products;
- 8.3.2. have access to the control equipment necessary for checking the conformity of each approved type;
- 8.3.3. ensure that data of test results are recorded and that annexed documents shall remain available for a period to be determined in accordance with the Type Approval Authorities;
- 8.3.4. analyse the results of each type of test, in order to verify and ensure the stability of the product characteristics making allowance for variation of an industrial production;
- 8.3.5. ensure that for each type of product at least the tests prescribed in Annex 7 to this Regulation are carried out;
- 8.3.6. ensure that any sampling or test pieces giving evidence of non-conformity with the type of test considered shall give rise to another sampling and another test. All the necessary steps shall be taken to re-establish the conformity of the corresponding production.

ORIGINAL :UNITED NATIONS of January 11, 1983

- **8.4.** The competent authority which has granted type-approval may at any time verify the conformity control method applicable to each production unit.
- *8.4.1.* In every inspection the test books and production survey records shall be presented to the visiting inspector.
- 8.4.2. The inspector may take samples at random which will be tested in the manufacturer's laboratory. The minimum number of samples may be determined according to the results of the manufacturer's own verification.
- 8.4.3. When the quality level appears unsatisfactory or when it seems necessary to verify the validity of the tests carried out in application of Paragraph 8.4.2. the inspector shall select samples to be sent to the technical service which has conducted the type approval tests.
- 8.4.4. The competent authority may carry out any test prescribed in this Regulation.
- 8.4.5. The normal frequency of inspections by the competent authority shall be one every two years. If unsatisfactory results are recorded during one of these visits, the competent authority shall ensure that, all necessary steps are taken to re-establish the conformity of production as rapidly as possible.

9. PENALTIES FOR NON-CONFORMITY OF PRODUCTION

- **9.1.** The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirements set forth above are not met.
- **9.2.** If a Contracting Party to the Agreement applying this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation, by means of a communication form conforming to the model in Annex 1 to this Regulation.

10. PRODUCTION DEFINITIVELY DISCONTINUED

10.1. If the holder of the approval completely ceases to manufacture a vehicle type approved in accordance with this Regulation, he shall so inform the authority which granted the approval. Upon receiving the relevant communication that authority shall inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in Annex 1 to this Regulation.

11. TRANSITIONAL PROVISIONS

- **11.1.** As from the official date of entry into force of the 02 series of amendments, no Contracting Party applying this Regulation shall refuse to grant ECE approval under this Regulation as amended by the 02 series of amendments.
- **11.2.** As from October 1, 1995, Contracting Parties applying this Regulation shall grant ECE approvals only if the vehicle type to be approved meets the requirements of this Regulation as amended by the 02 series of amendments.
- **11.3.** As from October 1, 1996, Contracting Parties applying this Regulation may refuse first national registration (first entry into service) of a vehicle which does not meet the requirements of the 02 series of amendments to this Regulation.

6888650 VTA

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

12. NAMES AND ADDRESSES OF TECHNICAL SERVICES RESPONSIBLE FOR CONDUCTING APPROVAL TESTS AND OF TYPE APPROVAL AUTHORITIES

The Parties to the 1958 Agreement applying this Regulation shall communicate to the United Nations Secretariat the names and addresses of the technical services responsible for conducting approval tests and of the Type Approval Authorities which grant approval and to which forms certifying approval or extension or refusal or withdrawal of approval, issued in other countries, are to be sent.

1000051

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

ANNEX 1

(Maximum format: A4 (210 × 297 mm))

COMMUNICATION

issued by:	Name of administration:
	•••••••••••••••••

concerning: (2)

APPROVAL GRANTED APPROVAL EXTENDED APPROVAL REFUSED APPROVAL WITHDRAWN PRODUCTION DEFINITIVELY DISCONTINUED

of a vehicle type with regard to its noise emission pursuant to ECE Regulation No. 51

Approval No)	Extension No
1.	Trade name or mark of the vehicle	
2.	Vehicle type	
2.1.	Maximum permissible mass including semi-trailer (where	applicable)
3.	Manufacturer's name and address	
4.	If applicable, name and address of manufacturer's repres	entative
5.	Engine:	
5.1.	Manufacturer:	
5.2.	Туре:	
5.3.	Model:	
5.4.	Rated maximum power (ECE): kW at	t rev/min

TITLE: Noise Emissions

⁽¹⁾ Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provision in the Regulations). (2)

Delete what does not apply.

1000051 VTA

COUNTRY	:E.C.E. © InterRegs Ltd 2012	2
ORIGINAL	UNITED NATIONS of January 11, 1983	
5.5.	Kind of engine: e.g. positive-ignition, compression ignition, etc. ⁽¹⁾	
5.6.	Cycles: two stroke or four-stroke (if applicable)	
5.7.	Cylinder capacity (if applicable)	
6.	Transmission: non-automatic gearbox/automatic gearbox (2)	
6.1.	Number of gears	
7.	Equipment:	
7.1.	Exhaust silencer:	
7.1.1.	Manufacturer of authorized representative (if any)	* •
7.1.2.	Model:	÷
7.1.3.	Type: in accordance with drawing No.:	•
7.2.	Intake silencer:	
7.2.1.	Manufacturer or authorized representative (if any)	•
7.2.2.	Model:	٠
7.2.3.	Type: in accordance with drawing No.:	
7.3.	Tyre size (by axle):	•
8.	Measurements:	

⁽¹⁾ If a non-conventional engine is used, this should be stated.

⁽²⁾ Delete what does not apply.
© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

8.1. Sound Level of Moving Vehicle:

MEASUREMENT RESULTS			
	Left-hand side dB(a) ⁽¹⁾	Right-hand side dB(A) ⁽¹⁾	Position of gear lever
First measurement			
Second measurement			
Third measurement			
Fourth measurement			
Test result: dB(A)			

8.2. Sound Level of Stationary Vehicle:

Position and Orientation of Microphone (According to Diagrams in Appendix of Annex 3)

	MEASUREMENT RESULT	S
	dB(A)	Engine speed
First measurement		
Second measurement		
Third measurement		
Test result: dB(A)		

8.3. Sound Level of Compressed Air Noise:

М	EASUREMENT RESULT	S
	Left-hand side dB(A) ⁽¹⁾	Right-hand side dB(A) ⁽¹⁾
First measurement		
Second measurement		
Third measurement		
Fourth measurement		
Test result:		dB(A)

8.4. Ambient Conditions

8.4.1. Test site (surface characteristics):

⁽¹⁾ The measurement values are given with the 1 dB(A) deduction in accordance with the provisions of Paragraph 6.2.2.1.

ATV 22000052 VTA

ORIGINAL :UNITED NATIONS of January 11, 1983	
8.4.2 Tomporaturas (in °C):	
0.4.2. Temperatures (IIT C).	
8.4.2.1. Temperature of ambient air:	
8.4.2.2. Temperature of test track surface:	
8.4.3. Atmospheric pressure (kPa):	
8.4.4. Humidity (%):	
8.4.5. Wind speed (km/h):	
8.4.6. Wind direction:	
8.4.7. Background noise (dB(A)):	
9. Vehicle submitted for approval on:	
10. Technical service responsible for type-approval tests:	
11. Date of test report issued by that service:	
12. Number of test report issued by that service:	
13. Type-approval in respect of sound levels is hereby gra	anted/extended/refused/withdrawn ⁽¹⁾
14. Position of approval mark on the vehicle	
15. Place	
16. Date	
17. Signature	
18. The following documents, bearing the approval numl communication:	ber shown above, are annexed to this
drawings, diagrams and plans of the engine and of the	e noise reduction system;
photographs of the engine and of the noise reduction	system;
list of components, duly identified constituting the nois	se reduction system.
19. Remarks:	

⁽¹⁾ Delete what does not apply.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

ANNEX 2

ARRANGEMENTS OF THE APPROVAL MARK

Model A

(See Paragraph 5.4. of this Regulation)

a = 8 mm min.

The above approval mark affixed to a vehicle shows that the vehicle type concerned has, with regard to its noise emission, been approved in the Netherlands (E 4) pursuant to Regulation No. 51 under approval No. 022439. The first two digits of the approval number indicate that Regulation No. 51 already included the 02 series of amendments when the approval was granted.

Model B

(See Paragraph 5.5. of this Regulation)

a = 8 mm min.

The above approval mark affixed to a vehicle shows that the vehicle type concerned has been approved in the Netherlands (E 4) pursuant to Regulations Nos. 51 and 33.⁽¹⁾ The approval numbers indicate that, at the dates when the respective approvals were granted, Regulation No. 51 included the 02 series of amendments while Regulation No. 33 was in its original form.

⁽¹⁾ The latter number is given as an example only

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 3

METHODS AND INSTRUMENTS FOR MEASURING THE NOISE MADE BY MOTOR VEHICLES (MEASUREMENT METHOD A)

1. MEASURING INSTRUMENTS

1.1. Acoustic Measurements

The sound level meter or the equivalent measuring system, including the windscreen recommended by the manufacturer shall at least meet the requirements of Type 1 instruments in accordance with IEC 651, second edition.

The measurements shall be made using the frequency weighting A, and the time weighting F.

When using a system that includes a periodic monitoring of the A-weighted sound level, a reading should be made at a time interval not greater than 30 ms.

1.1.1. Calibration

At the beginning and at the end of every measurement session the entire measurement system shall be checked by means of a sound calibrator that fulfils the requirements for sound calibrators of at least precision Class 1 according to IEC 942:1988. Without any further adjustment the difference between the readings of two consecutive checks shall be less than or equal to 0.5 dB. If this value is exceeded the results of the measurements obtained after the previous satisfactory check shall be discarded.

1.1.2. Compliance with Requirements

The compliance of the sound calibration device with the requirements of IEC 942:1988 shall be verified once a year and the compliance of the instrumentation system with the requirements of IEC 651, second edition shall be verified at least every two years, by a laboratory which is authorised to perform calibrations traceable to the appropriate standards.

1.2. Speed Measurements

The rotational speed of the engine and the vehicle speed shall be measured with instruments with an accuracy of $\pm 2\%$ or better.

1.3. Meteorological Instrumentation

The meteorological instrumentation used to monitor the environmental conditions shall include the following:

- (i) A temperature measuring device which shall be accurate within $\pm 1^{\circ}$ C;
- (ii) A wind speed measuring device which shall be accurate within \pm 1.0 m/s.

© InterRegs Ltd 2012

800052

ORIGINAL : UNITED NATIONS of January 11, 1983

2. CONDITIONS OF MEASUREMENT

2.1. Site

2.1.1. The test site must consist of a central acceleration section surrounded by a substantially flat test area.

The acceleration section must be level; the track surface must be dry and such that rolling noise remains low.

The test track must be such that the conditions of a free sound field between the sound source and the microphone are attained to within 1 dB. This condition shall be deemed to be met if there are no large sound-reflecting objects such as fences, rocks, bridges or building within 50 m of the centre of the acceleration section. The surface of the site must be in accordance with the provisions given in Annex 8 to this Regulation and be free of powdery snow, tall grass, loose soil or cinders. There must be no obstacle which could affect the sound field within the vicinity of the microphone and the sound source. The observer carrying out the measurements must so position himself as not to affect the readings of the measuring instrument.

2.1.2. Measurements shall not be made under adverse weather conditions. It must be ensured that the results are not affected by gusts of wind.

Any sound peak which appears to be unrelated to the characteristics of the general sound level of the vehicle shall be ignored in taking the readings.

2.1.2.1. The meteorological instrumentation should be positioned adjacent to the test area at a height of 1.2 ± 0.1 m.

The measurements shall be made when the ambient air temperature is within the range from 0° C to 40° C.

Tests shall not be carried out if the wind speed, including gusts, at microphone height exceeds 5 m/s, during the sound measurement interval and shall be recorded during each test run.

Values representative of temperature, wind speed and direction, relative humidity, and barometric pressure shall be recorded during the sound measurement interval.

2.1.3. The A-weighted sound level of sound sources other than those of the vehicle to be tested and of wind effects must be at least 10 dB(A) below the sound level produced by the vehicle.

2.2. Vehicle

- 2.2.1. Measurements shall be made on unladen vehicles and, except in the case of non-separable vehicles, without trailer or semi-trailer.
- 2.2.2. The tyres used for the test are selected by the vehicle manufacturer and shall comply with commercial practice and be available on the market; they shall correspond to one of the tyre sizes designated for the vehicle by the vehicle manufacturer and meet the minimum tread depth of 1.6 mm in the main grooves of the tread surface.

The tyres must be inflated to the pressure(s) appropriate to the test mass of the vehicle.

TITLE: Noise Emissions

Jul/2012

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

- 2.2.3. Before the measurements are started, the vehicle shall be brought to its normal operating conditions as regards:
- 2.2.3.1. temperatures
- 2.2.3.2. tuning
- 2.2.3.3. fuel
- 2.2.3.4. sparking plugs, carburettor(s) etc., (as appropriate).
- 2.2.4. If the vehicle is fitted with more than two-wheel drive, it shall be tested in the drive which is intended for normal road use.
- 2.2.5. If the vehicle is fitted with fan(s) having an automatic actuating mechanism, this system must not be interfered with during the measurements.
- 2.2.6 If the vehicle is equipped with an exhaust system containing fibrous materials, the exhaust system is to be conditioned before the test according to Annex 5.

3. METHODS OF TESTING

3.1. Measurement of Noise of Vehicles in Motion

- 3.1.1. General conditions of test (see Appendix, Figure 1)
- 3.1.1.1. At least two measurements shall be made on each side of the vehicle. Preliminary measurements may be made for adjustment purposes, but shall be disregarded.
- 3.1.1.2. The microphone must be located at a distance of 7.5 ± 0.2 m from the reference Line CC' (Figure 1) of the track and 1.2 ± 0.1 m above the ground. Its axis of maximum sensitivity must be horizontal and perpendicular to the path of the vehicle (Line CC').
- 3.1.1.3. Two Lines, AA' and BB', parallel to Line PP' and situated respectively 10 m forward and 10 m rearward of that line shall be marked out on the test runway.

The vehicle shall be driven in a straight line over the acceleration section in such a way that the longitudinal median plane of the vehicle is as close as possible to the Line CC' and approach Line AA' at a steady speed as specified below. When the front of the vehicle reaches the Line AA', the throttle shall be fully opened as rapidly as practicable and held in the fully-opened position until the rear of the vehicle crosses Line BB'; the throttle shall then be closed again as rapidly as possible.

- 3.1.1.4. In the case of articulated vehicles consisting of two non-separable units regarded as a single vehicle, the semi-trailer shall be disregarded in determining when Line BB' is crossed.
- 3.1.1.5. The maximum sound level expressed in A-weighted decibels (dB(A)) shall be measured as the vehicle is driven between Lines AA' and BB'. Such value shall constitute the result of the measurement.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.1.2. Determination of the Approach Speed
- 3.1.2.1. Symbols used

The letter symbols used in this Paragraph have the following meaning:

- S: engine rotation speed as indicated under Item 5.4. of Annex 1.
- N_A: uniform engine rotational speed at the approach of Line AA'.
- V_A: uniform vehicle speed at the approach of Line AA'.

V_{max}: maximum speed declared by the vehicle manufacturer.

3.1.2.2. Vehicle with no gearbox

For vehicles with no gearbox or with no transmission control, the uniform speed at the approach of Line AA' will be such that:

- either $V_A = 50 \text{ km/h};$
- or V_A corresponding to $N_A = 3/4$ S and $V_A \le 50$ km/h

in the case of vehicles of Category M_1 and in the case of vehicles of categories other than M_1 , having an engine power not greater than 225 kW (ECE);

or V_A corresponding to $N_A = 1/2$ S and $V_A \le 50$ km/h

in the case of vehicles not belonging to Category M_1 having an engine power greater than 225 kW (ECE);

or, in the case of vehicles powered by an electric motor

$$V_{A} = \frac{3}{4} V_{max}$$
 or $V_{A} = 50 \text{ km/h}$,

whichever is the lower.

- 3.1.2.3. Vehicle with a manually-operated gearbox
- 3.1.2.3.1. Approach speed

The vehicle shall approach the Line AA' at a steady speed with a tolerance ± 1 km/h; except where the controlling factor is engine speed the tolerance shall be the larger of $\pm 2\%$ or ± 50 min⁻¹, such that:

either $V_A = 50 \text{ km/h};$

Jul/2012

220000 000055 VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL :UNITED NATIONS of January 11, 1983

or V_A corresponding to $N_A = 3/4$ S and $V_A \le 50$ km/h

in the case of vehicles of Category M_1 and in the case of vehicles of categories other than M_1 , having an engine power not greater than 225 kW (ECE);

or V_A corresponding to $N_A = 1/2$ S and $V_A \le 50$ km/h

in the case of vehicles not belonging to Category M₁ having an engine power greater than 225 kW (ECE);

or, in the case of vehicles powered by an electric motor

$$V_{A} = \frac{3}{4} V_{max}$$
 or $V_{A} = 50 \text{ km/h}$,

whichever is the lower.

- 3.1.2.3.2. Choice of the gear ratio
- 3.1.2.3.2.1. Vehicles of Categories M₁ and N₁ ⁽¹⁾ fitted with a gearbox having four or less forward gears shall be tested in second gear.
- 3.1.2.3.2.2. Vehicles of Categories M₁ and N₁ ⁽¹⁾ fitted with a gearbox having more than four forward gears shall be tested successively in second and third gear. The average value of the sound levels recorded for these two conditions shall be calculated.

However, vehicles of Category M_1 having more than four forward gears and equipped with an engine developing a maximum power greater than 140 kW (ECE) and a permissible maximum-power/maximum-mass ratio greater than 75 kW (ECE)/t shall be tested only in third gear, provided that the speed at which the rear of the vehicle passes the Line BB' in third gear is greater than 61 km/h.

If during the test in second gear, the engine speed exceeds the engine speed, S, at which the engine develops its rated maximum power, the test must be repeated with an approach speed and/or approach engine speed reduced by steps of 5% S, until the engine speed attained no longer exceeds S.

If the engine speed S is still attained with an approach speed corresponding to the idle speed, then the test will be performed only in third gear and the relevant results have to be evaluated.

⁽¹⁾ As defined in Annex 4 to this Regulation.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

3.1.2.3.2.3. Vehicles of categories other than M₁ and N₁ in which the total number of forward gear ratios is x (including those obtained by way of an auxiliary transmission or a multi-gear axle) will be tested sequentially, using the ratio equal to or higher than x/n. ^{(1) (2)}

Initial testing will be carried out using the ratio which is gear (x/n) or the next higher gear ratio if (x/n) is not an integer. The testing shall continue from the gear (x/n) to the next higher gear.

Shifting up gear ratios from (x/n) shall be terminating when in the gear X in which the rated engine speed is reached just before the rear of the vehicle has passed the Line BB'.

Sample Calculation for Testing: There are 16 forward ratios for drive train having a transmission with 8 gears and an auxiliary transmission with 2 gears. If the engine has 230 kW then $(x/n) = (8 \times 2)/3 = 16/3 = 5 1/3$. The initial test gear ratio is 6th (includes the gears from both the main transmission and auxiliary which is 6th out of the 16 total gear ratios), with the next gear ratio is 7th up to ratio X.

In the case of vehicles having different overall gear ratios the representative of the vehicle type by the test vehicle is determined as follows:

if the highest sound level is obtained between the ratio x/n and ratio X the vehicle shall be deemed representative of its type;

if the highest sound level is obtained at ratio x/n the vehicle selected shall be deemed representative of its type only for those vehicles which have a lower overall gear ratio at x/n;

if the highest sound level is obtained at ratio X the vehicle selected shall be deemed representative of its type only for those vehicles which have a higher overall gear ratio than the gear ratio X.

However the vehicle is deemed representative of its type also, if at the applicant's request the tests are extended over more ratios than foreseen, and the highest sound level is obtained between the extreme ratios tested.

- 3.1.2.4. Automatic transmission ⁽³⁾
- 3.1.2.4.1. Vehicles without a manual selector
- 3.1.2.4.1.1. Approach speed

The vehicle shall approach the Line AA' at various uniform speeds of 30, 40, 50 km/h or at 3/4 of the maximum on-road speed if this value is lower.

If the vehicle is equipped with an automatic transmission which cannot be tested with the procedure outlined in the subsequent sections, it shall be tested at different approach speeds, namely 30 km/h, 40 km/h, and 50 km/h, or at 3/4 of maximum vehicle speed as specified by the manufacturer if this value is lower. The condition giving the highest noise level shall be retained.

⁽¹⁾ Where: n = 2 for vehicles having an engine power not greater than 225 kW (ECE):

n = 3 for vehicles having an engine power greater than 225 kW (ECE).

If x/n does not correspond to a whole number, the nearest higher ratio must be used.

⁽³⁾ All vehicles equipped with automatic transmission.

STODOOSE VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.1.2.4.2. Vehicles equipped with a manual selector with X positions
- 3.1.2.4.2.1. Approach speed

The vehicle shall approach the Line AA' at a steady speed corresponding to the lower of the following velocities with a tolerance ± 1 km/h; except where the controlling factor is engine speed the tolerance shall be the larger of $\pm 2\%$ or ± 50 rpm, such that:

either
$$V_A = 50 \text{ km/h};$$

or V_A corresponding to $N_A = 3/4$ S and $V_A \le 50$ km/h

in the case of vehicles of Category M_1 and in the case of vehicles of categories other than M_1 , having an engine power not greater than 225 kW (ECE);

or V_A corresponding to $N_A = 1/2$ S and $V_A \le 50$ km/h

in the case of vehicles not belonging to Category M_1 having an engine power greater than 225 kW (ECE);

or, in the case of vehicles powered by an electric motor

$$V_{A} = \frac{3}{4} V_{max}$$
 or $V_{A} = 50 \text{ km/h},$

whichever is the lower.

However, if during the test, in the case of vehicles having more than two separate gears, there is an automatic down-shift to first gear, this down-shift may be avoided, at the manufacturer's choice, according to Paragraph 3.1.2.4.2.4.

3.1.2.4.2.2. Position of the Manual Selector

The test shall be conducted with the selector in the position recommended by the manufacturer for 'normal' driving. External downshifting (for example kickdown) shall be excluded.

3.1.2.4.2.3. Auxiliary Gears

If the vehicle is fitted with an auxiliary manual transmission or a multi-gear axle, the position used for normal urban driving shall be used. In all cases, the special selectors positions for slow movements, parking, or braking shall be excluded.

000057

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

3.1.2.4.2.4. Prevention of Downshift

Some vehicles equipped with an automatic transmission (two or more discrete ratios) may downshift to a gear ratio not normally used in urban driving, as defined by the manufacturer. A gear ratio not used for urban driving includes a gear ratio intended for slow movement, parking or braking. In these cases the operator may select any of the following modifications:

- (a) increase the vehicle speed v to a maximum of 60 km/h in order to avoid such a change down;
- (b) maintain the vehicle speed v at 50 km/h and limit the fuel supply to the engine to 95% of the supply necessary for full load; this condition is considered to be satisfied;
 - (i) in the case of a spark-ignition engine, when the angle of the throttle opening is 90% of the full angle,
 - (ii) in the case of a compression-ignition engine, when the fuel supply to the injection pump is limited to 90% of its maximum supply;
- (c) establish and use an electronic control that will prevent a downshift to gears lower than those used in normal urban driving as defined by the manufacturer.

3.1.3 Interpretation of Results

The measurement of noise emitted by the vehicle in motion shall be considered valid if the difference between the two consecutive measurements on the same side of the vehicle is not more than 2 dB(A). ⁽¹⁾

The figure recorded shall be that corresponding to the highest sound level. Should that figure exceed by more than 1 dB(A) the maximum sound level authorised for the category of vehicle tested, a second series of two measurements at the corresponding microphone position shall be made. Three out of the four results so obtained in this second position must fall within the prescribed limits.

To allow for lack of precision in the measuring instrument the figures read from it during measurement shall each be reduced by 1 dB(A).

3.2. Measurement of Noise Emitted by Stationary Vehicles

3.2.1. Sound Level in the Vicinity of Vehicles

In order to facilitate subsequent checks on vehicles in use, the sound level must be measured close to the exhaust system outlet in accordance with the following requirements and the measurement results entered in the test report drawn up for the purpose of issuing the certificate referred to in Annex 1.

TITLE: Noise Emissions

⁽¹⁾ The spread of results between runs may be reduced if there is a 1 min. wait between runs, at idle in neutral, which stabilises the vehicle operating temperature.

:000057 VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL :UNITED NATIONS of January 11, 1983

3.2.2. Acoustic Measurements

A precision sound level meter as defined Paragraph 1.1 of this Annex must be used for the measurements.

- 3.2.3. Test Site Local Conditions (see Appendix, Figures 2 and 3a to 3d)
- 3.2.3.1. Measurements should be made on a stationary vehicle in an area which corresponds to that for measurements of vehicles in motion and therefore corresponds to the provisions given in Annex 8 to this Regulation.
- 3.2.3.2. During the test nobody shall be in the measurement area, except the observer and the driver whose presence must have no influence on the meter reading.
- 3.2.4. Disturbance Noise and Wind Interference

Readings on the measuring instruments produced by ambient noise and wind must be at least 10 dB(A) below the sound level to be measured. A suitable windscreen may be fitted to the microphone provided that account is taken of its effect on the sensitivity of the microphone.

- 3.2.5. Measuring Method
- 3.2.5.1. Nature and Number of Measurements

The maximum sound level expressed in A-weighted decibels (dB(A)) must be measured during the operating period referred to in Paragraph 3.2.5.3.2.1.

At least three measurements must be taken at each measuring point.

3.2.5.2. Positioning and Preparation of the Vehicle

The vehicle shall be located in the centre part of the test area with the gear lever in neutral position and the clutch engaged. If the design of the vehicle does not allow this, the vehicle shall be tested in conformity with the manufacturer's prescriptions for stationary engine testing. Before each series of measurements, the engine must be brought to its normal operating condition, as specified by the manufacturer.

If the vehicle is fitted with fan(s) having an automatic actuating mechanism, this system shall not be interfered with during the sound level measurements.

3.2.5.3. Measuring of noise in proximity to the exhaust

(see Appendix, Figure 2)

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.2.5.3.1. Microphone Orientation
- 3.2.5.3.1.1. The microphone shall be located at a distance of 0.5 m ± 0.01 m from the reference point of the exhaust pipe defined in Figure 2 and at an angle of 45° (± 5°) to the vertical plane containing the flow axis of the pipe termination. The microphone shall be at the height of the reference point, but not less than 0.2 m from the ground surface. The reference axis of the microphone shall lie in a plane parallel to the ground surface and shall be directed towards the reference point on the exhaust outlet.

If two microphone positions are possible, the location farthest laterally from the vehicle longitudinal centreline shall be used.

If the flow axis of the exhaust outlet pipe is at 90° to the vehicle longitudinal centreline, the microphone shall be located at the point, which is furthest from the engine.

- 3.2.5.3.1.2. For vehicles having an exhaust provided with outlets spaced more than 0.3 m apart, one measurement is made for each outlet as if it were the only one, and the highest sound pressure level shall be noted.
- 3.2.5.3.1.3. If a vehicle has two or more exhaust outlets spaced less than 0.3 m apart and connected to a single silencer, only one measurement shall be made. The microphone shall be located relative to the outlet farthest from the vehicle longitudinal centreline, or when such outlet does not exist, to the outlet, which is highest above the ground.
- 3.2.5.3.1.4. For vehicles with a vertical exhaust (e.g. commercial vehicles) the microphone shall be placed at the height of the exhaust outlet. Its axis shall be vertical and oriented upwards. It shall be placed at a distance of 0.5 m ± 0.01 m from the exhaust pipe reference point as defined in Figure 2, but never less than 0.2 m from the side of the vehicle nearest to the exhaust.
- 3.2.5.3.1.5. For vehicles, where the reference point of the exhaust pipe is not accessible, or located under the vehicle body, as shown in Figures 3b and 3c, because of the presence of obstacles which form part of the vehicle (e.g. spare wheel, fuel tank, battery compartment), the microphone shall be located at least 0.2 m from the nearest obstacle, including the vehicle body, and its axis of maximum sensitivity shall face the exhaust outlet from the position least concealed by the above mentioned obstacles.

When several positions are possible, as shown in Figure 3c, the microphone position giving the lowest value of d1 or d2 shall be used.

Note: Figures 3a to 3d show examples of the position of the microphone, depending on the location of the exhaust pipe.

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.2.5.3.2. Operating Conditions of the Engine
- 3.2.5.3.2.1. Target Engine Speed

The target engine speed is defined as:

- (a) 75% of the engine speed S for vehicles with a rated engine speed \leq 5 000 min⁻¹;
- (b) 3,750 min⁻¹ for vehicles with a rated engine speed above 5 000 min⁻¹ and below 7500 min⁻¹;
- (c) 50% of the engine speed S for vehicles with a rated engine speed \ge 7 500 min⁻¹.

If the vehicle cannot reach the engine speed as stated above, the target engine speed shall be 5% below the maximum possible engine speed for that stationary test.

3.2.5.3.2.2. Test Procedure

The engine speed shall be gradually increased from idle to the target engine speed, not exceeding the tolerance band of \pm 5% of the target engine speed, and held constant. Then the throttle control shall be rapidly released and the engine speed shall be returned to idle. The sound pressure level shall be measured during a period consisting of constant engine speed of at least one second and throughout the entire deceleration period. The maximum sound level meter reading shall be taken as the test value.

3.2.5.3.2.3. Test Validation

The measurement shall be regarded as valid if the test engine speed does not deviate from the target engine speed by more than \pm 5% for at least one second.

- 3.2.6 Results
- 3.2.6.1 Measurements shall be made according to the microphone location(s) described in Paragraph 3.2.5.3.1.
- 3.2.6.2. The maximum A-weighted sound pressure level indicated during the test shall be noted, mathematically rounded to the first significant figure before the decimal place.
- 3.2.6.3. The test shall be repeated until three consecutive measurements at each outlet are obtained, which are within 2 dB of each other, allowing for deletion of non valid results.
- 3.2.6.4. The result for a given outlet is the arithmetic average of the three valid measurements, mathematically rounded as given above and shall be reported as the A-weighted sound pressure level L_{Aren}.
- 3.2.6.5. For vehicles equipped with multiple gas outlets, the sound pressure level reported L_{Arep} shall be for the outlet having the highest average sound pressure level.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 3 - APPENDIX

MEASURING POSITIONS FOR VEHICLES IN MOTION

Figure 1

Measuring Positions for Stationary Vehicles (Examples)

Regulation No. 51-02 PAGE: 30

ORIGINAL :UNITED NATIONS of January 11, 1983

© InterRegs Ltd 2012

T = top view S = side view A = metered pipe B = bent down pipe C = straight pipe D = vertical pipe 1 = reference point 2 = road surface

TITLE: Noise Emissions

Regulation No. 51-02 PAGE: 31

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

Figure 3a

Figure 3b

Figure 3d

COUNTRY :E.C.E.

200060

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 4

CLASSIFICATION OF VEHICLES (1)

1. CATEGORY L

(Not applicable for this Regulation)

- 2. Category M Power-driven vehicles having at least four wheels and used for the carriage of passengers
- **2.1.** Category M₁: Vehicles used for the carriage of passengers and comprising not more than eight seats in addition to the driver's seat.
- 2.2. Category M₂: Vehicles used for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass not exceeding 5 t.
- 2.3. Category M₃: Vehicles used for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass exceeding 5 t.
- 2.4. Vehicles of Categories M₂ and M₃ belong to one of the three following classes:
- 2.4.1. Class | 'city-bus': a vehicle of this class has seats, and spaces for standing passengers.
- 2.4.2. Class II **'interurban bus or coach'**: a vehicle of this class may have provision for standing passengers, but only in the gangway.
- 2.4.3. Class III 'touring coach': a vehicle of this class has no provisions to carry standing passengers.

2.5. Remarks

- 2.5.1. **'Articulated bus or coach'** is a vehicle which consists of two or more rigid sections which articulate relative to one another; the passenger compartments of each section intercommunicate so that passengers can move freely between them; the rigid sections are permanently connected so that they can only be separated by an operation involving facilities which are normally only found in a workshop.
- 2.5.2. Articulated buses or coaches comprising two or more non-separable but articulated units shall be considered as single vehicles.
- 2.5.3. In the case of a towing vehicle designed to be coupled to a semi-trailer (tractor for semi-trailer), the mass to be considered for classifying the vehicle is the mass of the tractor vehicle in running trim, increased by the mass corresponding to the maximum static vertical load transferred to the tractor vehicle by the semi-trailer and, where applicable, by the maximum mass of the tractor vehicle's own load.

⁽¹⁾ In conformity with the Consolidation Resolution on the Construction of Vehicles (R.E.3) (TRANS/SC1/WP29/78/Amend.3, Annex 7).

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

- Category N Power-driven vehicles having at least four wheels and used for the carriage of goods
- 3.1. Category N₁: Vehicles used for the carriage of goods and having a maximum mass not exceeding 3.5 t.
- 3.2. Category N₂: Vehicles used for the carriage of goods and having a maximum mass exceeding 3.5 t but not exceeding 12 t.
- 3.3. Category N_3 : Vehicles used for the carriage of goods and having a maximum mass exceeding 12 t.

3.4. Remarks

- 3.4.1. In the case of a towing vehicle designed to be coupled to a semi-trailer (tractor for semi-trailer), the mass to be considered for classifying the vehicle is the mass of the tractor vehicle in running trim, increased by the mass corresponding to the maximum static vertical load transferred to the tractor vehicle by the semi-trailer and, where applicable, by the maximum mass of the tractor vehicle's own load.
- 3.4.2. The equipment and installations carried on certain special-purpose vehicles (crane vehicles, workshop vehicles, publicity vehicles, etc.) are regarded as being equivalent to goods.

1000061 VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

ANNEX 5

SILENCING SYSTEMS CONTAINING ACOUSTICALLY ABSORBING FIBROUS MATERIALS

1. GENERAL

Sound absorbing fibrous materials may be used in silencing systems or components thereof only if

- (a) The exhaust gas is not in contact with the fibrous materials; or if
- (b) The silencing system or components thereof are of the same design family as systems or components for which it has been proven, in the course of type approval process in accordance with the requirements of this regulation for another vehicle-type, that they are not subject to deterioration.

Unless one of these conditions is fulfilled, the complete silencing system or components thereof shall be submitted to a conventional conditioning using one of three installations and procedures described below.

1.1. Continuous Road Operation for 10 000 Km

- 1.1.1. $50 \pm 20\%$ of this operation shall consist of urban driving and the remaining operation shall be long-distance runs at high speed; continuous road operation may be replaced by a corresponding test-track programme.
- 1.1.2. The two speed regimes shall be alternated at least twice.
- 1.1.3. The complete test programme shall include a minimum of 10 breaks of at least three hours duration in order to reproduce the effects of cooling and any condensation which may occur.

1.2. Conditioning on a Test Bench

- 1.2.1. Using standard parts and observing the vehicle manufacturer's instructions, the silencing system or components thereof shall be fitted to the vehicle referred to in Paragraph 3.3. of this Regulation or the engine referred to in Paragraph 3.4. of this Regulation. In the former case the vehicle shall be mounted on a roller dynamometer. In the second case, the engine shall be coupled to a dynamometer.
- *1.2.2.* The test shall be conducted in six six-hour periods with a break of at least 12 hours between each period in order to reproduce the effects of cooling any condensation which may occur.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- *1.2.3.* During each six-hour period, the engine shall be run, under the following conditions:
 - (a) Five minutes at idling speed;
 - (b) One-hour sequence under 1/4 load at 3/4 of rated maximum speed (S);
 - (c) One-hour sequence under 1/2 load at 3/4 of rated maximum speed (S);
 - (d) 10-minute sequence under full load at ¾ of rated maximum speed (S);
 - (e) 15-minute sequence under 1/2 load at rated maximum speed (S);
 - (f) 30-minute sequence under 1/4 load at rated maximum speed (S).

Each period shall comprise two sequenced sets of the six above-mentioned conditions in consecutive order from (a) to (f).

1.2.4. During the test, the silencing system or components thereof shall not be cooled by a forced draught simulating normal airflow around the vehicle. Nevertheless, at the request of the manufacturer, the silencing system or components thereof may be cooled in order not to exceed the temperature recorded at its inlet when the vehicle is running at maximum speed.

1.3. Conditioning by Pulsation

1.3.1. The silencing system or components thereof shall be fitted to the vehicle referred to in Paragraph 3.3 of this Regulation or the engine referred to in Paragraph 3.4 of this Regulation. In the former case the vehicle shall be mounted on a roller dynamometer.

In the second case, the engine shall be mounted on a dynamometer. The test apparatus, a detailed diagram of which is shown in Figure 3 of the Appendix to this Annex shall be fitted at the outlet of the silencing system. Any other apparatus providing equivalent results is acceptable.

- 1.3.2. The test apparatus shall be adjusted in a such a way that the exhaust-gas flow is alternatively interrupted and re-established by the quick-action valve for 2 500 cycles.
- 1.3.3. The valve shall open when the exhaust-gas back pressure, measured at least 100 mm downstream of the intake flange, reaches a value of between 35 and 40 kPa. It shall close when this pressure does not differ by more than 10% from its stabilised value with the valve open.
- 1.3.4. The time-delay switch shall be set for the duration of gas exhaust resulting from the provisions laid down in Paragraph 1.3.3 above.
- 1.3.5. Engine speed shall be 75% of the speed (S) at which the engine develops maximum power.
- 1.3.6. The power indicated by the dynamometer shall be 50% of the full-throttle power measured at 75% of engine speed (S).
- 1.3.7. Any drain holes shall be closed off during the test.
- *1.3.8.* The entire test shall be completed within 48 hours.

If necessary, one cooling period will be observed after each hour.

TITLE: Noise Emissions

Jul/2012

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

Figure 3

Test Apparatus for Conditioning by Pulsation

1. Inlet flange or sleeve for connection to the rear of the test exhaust system.

- 2. Hand-operated regulating valve.
- 3. Compensating reservoir with a maximum capacity of 40 I and a filling time of not less than one second.
- 4. Pressure switch with an operating range of 0.05 to 2.5 bar.
- 5. Time delay switch.
- Pulse counter.
- 7. Quick-acting valve, such as exhaust brake valve 60 mm in diameter, operated by a pneumatic cylinder with an output of 120 N at 4 bar. The response time, both when opening and closing, must not exceed 0.5 second.
- 8. Exhaust gas evacuation.
- 9. Flexible pipe.
- 10. Pressure gauge.

TITLE: Noise Emissions

Jul/2012

Regulation No. 51-02 PAGE: 37

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 6

COMPRESSED AIR NOISE

1. METHOD OF MEASUREMENT

The measurement is performed at microphone position 2 and 6 according to Figure 1, with the vehicle stationary. The highest A-weighted noise level is registered during venting the pressure regulator and during ventilating after the use of both the service and parking brakes.

The noise during venting the pressure regulator is measured with the engine at idling speed. The ventilating noise is registered while operating the service and parking brakes; before each measurement, the air-compressor unit has to be brought up to the highest permissible operating pressure, and then the engine switched off.

2. EVALUATION OF THE RESULTS

For all microphone positions two measurements are taken. In order to compensate for inaccuracies of the measuring equipment, the meter reading is reduced by 1 dB(A), and the reduced value is taken as the result of measurement. The results are taken as valid if the difference between the measurements as one microphone position does not exceed 2 dB(A). The highest value measured is taken as the result. If this value exceeds the noise limit of 1 dB(A), two additional measurements are to be taken at the corresponding microphone position.

In this case, three out of the four results of measurement obtained at this position have to comply with the noise limit.

3. LIMITING VALUE

The sound level shall not exceed the limit of 72 dB(A).

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

Microphone Positions for Measurement of Compressed Air Noise

The measurement is performed at the stationary vehicle according to Figure 1, using two microphone positions at a distance of 7 m from the contour of the vehicles, and at 1.2 m above ground.

PAGE: 39

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 7

CHECKS ON CONFORMITY OF PRODUCTION

1. GENERAL

These requirements are consistent with the test to be held to check conformity of production according to Paragraphs 8.3.5. and 8.4.3. of this Regulation.

2. TESTING PROCEDURE

The test site and measuring instruments shall be those as described in Annex 3.

2.1. The vehicle(s) under test shall be subjected to the test for measurement of noise of vehicle in motion as described in Paragraph 3.1. of Annex 3.

2.2. Compressed Air Noise

Vehicles having maximum mass exceeding 2 800 kg and equipped with compressed air systems must be subjected to an additional test for measurement of the compressed air noise as described in Paragraph 1 of Annex 6.

3. SAMPLING

One vehicle has to be chosen. If after the test of Paragraph 4.1. the vehicle is not considered to conform to the requirements of this Regulation, two more vehicles have to be tested.

4. EVALUATION OF THE RESULTS

- **4.1.** If the sound level of the vehicle tested pursuant to Paragraphs 1 and 2 does not exceed by more than 1 dB(A) the limit value prescribed in Paragraph 6.2.2. of this Regulation, for measurement according to Paragraph 2.1. above, and in Paragraph 3 of Annex 6 to this Regulation, for measurement according to Paragraph 2.2. above, the vehicle type shall be considered to conform to the requirements of this Regulation.
- **4.2.** If the vehicle tested according to Paragraph 4.1. does not satisfy the requirements laid down in that Paragraph, two more vehicles of the same type have to be tested pursuant to Paragraphs 1 and 2.
- **4.3.** If the sound level of the second and/or third vehicle of Paragraph 4.2. exceeds by more than 1 dB(A) the limit values prescribed in Paragraph 6.2.2. of this Regulation, the vehicle type shall be considered not to conform to the requirements of this Regulation and the manufacturer shall take the necessary measures to re-establish the conformity.

0064 VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

ANNEX 8

SPECIFICATIONS FOR THE TEST SITE

1. INTRODUCTION

This Annex described the specifications relating to the physical characteristics and the laying of the test track. These specifications based on a special standard ⁽¹⁾ describe the required physical characteristics as well as the test methods for these characteristics.

2. REQUIRED CHARACTERISTICS OF THE SURFACE

A surface is considered to conform to this standard provided that the texture and voids content or sound absorption coefficient have been measured and found to fulfil all the requirements of Paragraphs 2.1. to 2.4. below and provided that the design requirements (Paragraph 3.2.) have been met.

2.1. Residual Voids Content

The residual voids content, V_c , of the test track paving mixture shall not exceed 8%. For the measurement procedure, see Paragraph 4.1.

2.2. Sound Absorption Coefficient

If the surface fails to comply with the residual voids content requirement, the surface is acceptable only if its sound absorption coefficient, $\alpha \leq 0.10$. For the measurement procedure, see Paragraph 4.2. The requirements of Paragraphs 2.1. and 2.2. is met also if only sound absorption has been measured and found to be $\alpha \leq 0.10$.

Note: The most relevant characteristic is the sound absorption, although the residual voids content is more familiar among road constructors. However, sound absorption needs to be measured only if the surface fails to comply with the voids requirement. This is motivated because the latter is connected with relatively large uncertainties in terms of both measurements and relevance and some surfaces therefore erroneously may be rejected when based only on the voids measurement.

2.3. Texture Depth

The texture depth (TD) measured according to the volumetric method (see Paragraph 4.3. below) shall be:

TD ≥ 0.4 mm

2.4. Homogeneity of the Surface

Every practical effort shall be taken to ensure that the surface is made to be as homogeneous as possible within the test area. This includes the texture and voids content, but it should also be observed that if the rolling process results in more effective rolling at some places than others, the texture may be different and unevenness causing bumps may also occur.

TITLE: Noise Emissions

Jul/2012

⁽¹⁾ ISO 10844 : 1994.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

2.5. Period of Testing

In order to check whether the surface continues to conform to the texture and voids content or sound absorption requirements stipulated in this standard, periodic testing of the surface shall be done at the following intervals:

(a) For residual voids content or sound absorption:

when the surface is new;

if the surface meets the requirements when new, no further periodical testing is required. If it does not meet the requirement when it is new, it may do later because surfaces tend to become clogged and compacted with time.

(b) For texture depth (TD):

when the surface is new;

when the noise testing starts (NB: not before four weeks after laying);

then every twelve months.

3. TEST SURFACE DESIGN

3.1. Area

When designing the test track layout it is important to ensure that, as a minimum requirement, the area traversed by the vehicles running through the test strip is covered with the specified test material with suitable margins for safe and practical driving. This will require that the width of the track is at least 3 m and the length of the track extends beyond Lines AA and BB by at least 10 m at either end. Figure 1 shows a plan of a suitable test side and indicates the minimum area which shall be machine laid and machine compacted with the specified test surface material. According to Annex 3, Paragraph 3.1.1.1., measurements have to be made on each side of the vehicle. This can be made either by measuring with two microphone locations (one on each side of the track) and driving in one direction, or measuring with a microphone only on one side of the track but driving the vehicle in two directions. If the latter method is used, then there are no surface requirements on that side of the track where there is no microphone.

380000 000065 VTA

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

NOTE - There shall be no large acoustically reflective objects within this radius.

Figure 1

Minimum Requirement for Test Surface Area. The Shaded Part is Called "Test Area"

3.2. Design and Preparation of the Surface

3.2.1. Basic Design Requirements

The test surface shall meet four design requirements:

- 3.2.1.1. It shall be a dense asphaltic concrete.
- 3.2.1.2. The maximum chipping size shall be 8 mm (tolerances allow from 6.3 to 10 mm).
- 3.2.1.3. The thickness of the wearing course shall be \geq 30 mm.
- 3.2.1.4. The binder shall be a straight penetration grade bitumen without modification.

TITLE: Noise Emissions

Jul/2012

Regulation No. 51-02 PAGE: 43

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

3.2.2. Design Guidelines

As a guide to the surface constructor, an aggregate grading curve which will give desired characteristics is shown in Figure 2. In addition. Table 1 gives some guidelines in order to obtain the desired texture and durability. The grading curve fits the following formula:

P (% passing) = $100 \cdot (d/d_{max})^{1/2}$

where:

d	Ξ	square mesh sieve size, in mm
d _{max}	=	8 mm for the mean curve
d _{max}	=	10 mm for the lower tolerance curve
d _{max}	=	6.3 mm for the upper tolerance curve

Figure 2

Grading Curve of the Aggregate in the Asphaltic Mix with Tolerances

In addition to the above, the following recommendations are given:

- (a) The sand fraction (0.063 mm < square mesh sieve size < 2 mm) shall include no more than 55% natural sand and at least 45% crushed sand;
- (b) The base and sub-base shall ensure a good stability and evenness, according to best road construction practice;
- (c) The chippings shall be crushed (100% crushed faces) and of a material with a high resistance to crushing;

ATV 30000

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- (d) The chippings used in the mix shall be washed;
- (e) No extra chippings shall be added onto the surface;
- (f) The binder hardness expressed as PEN value shall be 40-60, 60-80 or even 80-100 depending on the climatic conditions of the country. The rule is that as hard a binder as possible shall be used, provided this is consistent with common practice;
- (g) The temperature of the mix before rolling shall be chosen so as to achieve by subsequent rolling the required voids content. In order to increase the probability of satisfying the specifications of Paragraphs 2.1. to 2.4. above, the compactness shall be studied not only by an appropriate choice of mixing temperature, but also by an appropriate number of passings and by the choice of compacting vehicle.

Table 1

Design Guidelines

	Target values		
	By total mass of mix	By mass of the aggregate	Tolerances
Mass of stones, square mesh sieve (SM) > 2 mm	47.6 %	50.5 %	± 5
Mass of sand 0.063 < SM < 2 mm	38.0 %	40.2 %	± 5
Mass of filler SM < 0.063 mm	8.8 %	9.3 %	± 2
Mass of binder (bitumen)	5.8 %	N.A.	± 0.5
Max. chipping size	8 mm		± 6.3 – 10
Binder hardness	(see Paragraph 3.2.2. (f))		
Polished stone value (PSV)	> 50		
Compactness, relative to Marshall compactness	98	3 %	

4. TEST METHOD

4.1. Measurement of the Residual Voids Content

For the purpose of this measurement, cores have to be taken from the track in at least four different positions which are equally distributed in the test area between Lines AA and BB (see Figure 1). In order to avoid inhomogeneity and unevenness in the wheel tracks, cores should not be taken in wheel tracks themselves, but close to them. Two cores (minimum) should be taken close to the wheel tracks and one core (minimum) should be taken approximately midway between the wheel tracks and each microphone location.

If there is a suspicion that the condition of homogeneity is not met (see Paragraph 2.4.), cores shall be taken from more locations within the test area.

© InterRegs Ltd 2012

ORIGINAL : UNITED NATIONS of January 11, 1983

The residual voids content has to be determined for each core, then the average value from all cores shall be calculated and compared with the requirement of Paragraph 2.1. In addition, no single core shall have a voids value which is higher than 10%. The test surface constructor is reminded of the problem which may arise when the test area is heated by pipes or electrical wires and cores must be taken from this area. Such installations must be carefully planned with respect to future core drilling locations. It is recommended to leave a few locations of size approximately 200 × 300 mm where there are no wires/pipes or where the latter are located deep enough in order not to be damaged by cores taken from the surface layer.

4.2. Sound Absorption Coefficient

The sound absorption coefficient (normal incidence) shall be measured by impedance tube method using the procedure specified in ISO 10534-1: "Acoustic – Determination of sound absorption coefficient and impedance by a tube method." ⁽¹⁾

Regarding test specimens, the same requirements shall be followed as regarding the residual voids content (see Paragraph 4.1.). The sound absorption shall be measured in the range between 400 Hz and 800 Hz and in the range between 800 Hz and 1,600 Hz (at least at the centre frequencies of their octave bands) and the maximum values shall be identified for both of these frequency ranges. Then these values, for all test cores, shall be averaged to constitute the final result.

4.3. Volumetric Macrotexture Measurement

For the purpose of this standard, texture depth measurements shall be made on at least 10 positions evenly spaced along the wheel tracks of the test strip and the average value taken to compare with the specified minimum texture depth. See ISO 10844:1994 for the description of the procedure.

5. STABILITY IN TIME AND MAINTENANCE

5.1. Age Influence

In common with any other surfaces, it is expected that the tyre/road noise level measure on the test surface may increase slightly during the first 6-12 months after construction.

The surface will achieve its required characteristics not earlier than four weeks after construction. The influence of age on the noise from trucks is generally less than that from cars.

The stability over time is determined mainly by the polishing and compaction by vehicles driving on the surface. It shall be periodically checked as stated in Paragraph 2.5.

5.2. Maintenance of the Surface

Loose debris or dust which could significantly reduce the effective texture depth must be removed from the surface. In countries with winter climates, salt is sometimes used for de-icing. Salt may alter the surface temporarily or even permanently in such a way as to increase noise and is therefore not recommended.

⁽¹⁾ To be published.

000067 VTA

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

5.3. Repaving the Test Area

If it is necessary to repave the test track, it is usually unnecessary to repave more than the test strip (of 3 m width in Figure 1) where vehicles are driving, provided the test area outside the strip met the requirement of residual voids content or sound absorption when it was measured.

6. DOCUMENTATION OF THE TEST SURFACE AND OF TESTS PERFORMED ON IT

6.1. Documentation of the Test Surface

The following data shall be given in a document describing the test surface:

- 6.1.1. The Location of the Test Track.
- 6.1.2. Type of binder, binder hardness, type of aggregate, maximum theoretical density of the concrete (D_R), thickness of the wearing course and grading curve determined from cores from the test track.
- 6.1.3. Method of compaction (e.g. type of roller, roller mass, number of passes).
- 6.1.4. Temperature of the mix, temperature of the ambient air and wind speed during laying of the surface.
- 6.1.5. Date when the surface was laid and contractor.
- 6.1.6. All or at least the latest test result, including:
- 6.1.6.1. The residual voids content of each core.
- 6.1.6.2. The locations in the test area from where the cores for voids measurements have been taken.
- 6.1.6.3. The sound absorption coefficient of each core (if measured). Specify the results both for each core and each frequency range as well as the overall average.
- 6.1.6.4. The locations in the test area from where the cores for absorption measurement have been taken.
- 6.1.6.5. Texture depth, including the number of tests and standard deviation.
- 6.1.6.6. The institution responsible for tests according to Paragraphs 6.1.6.1. and 6.1.6.2. and the type of equipment used.
- 6.1.6.7. Date of test(s) and date when the cores were taken from the test track.

6.2. Documentation of Vehicle Noise Tests Conducted on the Surface

In the document describing the vehicle noise test(s) it shall be stated whether all the requirements of this standard were fulfilled or not. Reference shall be given to a document according to Paragraph 6.1. describing the results which verify this.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 9

VEHICLE AND TEST DATA PURSUANT TO MEASUREMENT METHOD B

Information reported in Annex 1 need not to be repeated

1.	Trade name or mark of the vehicle
2.	Vehicle type
2.1.	Maximum mass including semi-trailer (where applicable)
3.	Manufacturer's name and address
4.	If applicable, name and address of manufacturer's representative
5.	Engine:
5.1.	Manufacturer:
5.2.	Туре:
5.3.	Model:
5.4.	Rated maximum power (ECE): kW at min ⁻¹ (rpm)
5.5.	Kind of engine: e.g. positive-ignition, compression ignition, etc ⁽¹⁾
5.6.	Cycles: two stroke or four-stroke (if applicable)
5.7.	Cylinder capacity (if applicable)
6.	Transmission: non-automatic gearbox/automatic gearbox ⁽²⁾
6.1.	Number of gears
7.	Equipment:
7.1.	Exhaust silencer:
7.1.1.	Manufacturer or authorised representative (if any)
7.1.2.	Model:
7.1.3.	Type: in accordance with drawing No.:

TITLE: Noise Emissions

⁽¹⁾ If a non-conventional engine is used, this should be stated.

⁽²⁾ Strike out what does not apply.

COUNTRY :E.C.E. © InterRegs Ltd 2012 ORIGINAL : UNITED NATIONS of January 11, 1983 7.2. Intake silencer: 721 Manufacturer or authorized representative (if any) 7.2.2. Model: 7.2.3. Type: in accordance with drawing No.: 7.3. Elements of capsulation 7.3.1. Elements of noise encapsulation as defined by the vehicle manufacturer 7.3.2. Manufacturer or authorized representative (if any) 7.4. Tyres 7.4.1. Tyre size(s) (by axle): 8. Measurements: 8.1. Length of the vehicle (Iveh): mm 8.2. Point of accelerator depression: m before Line AA' 8.2.1. AA' / PP' 1/ min⁻¹ (rpm) Engine speed in gear i at: BB' min⁻¹ (rpm) Engine speed in gear (i+1) at: AA' / PP' 1/ min⁻¹ (rpm) 8.2.2 BR' 8.3. Type approval number of tyre(s): if not available, the following information shall be provided: 8.3.1. Tyre manufacturer 8.3.2. Commercial description(s) of the type of tyre (by axle), (e.g. trade name, speed index, load index): 8.3.3. Tyre size (by axle): 8.3.4. Type approval number (if available): 8.4. Noise level of moving vehicle: Test result (I_{urban}): dB(A) Test result (Iwot): dB(A) Test result (Icruise): dB(A) kp - factor:

TITLE: Noise Emissions

9

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

8.5.	Noise level of stationary vehicle:		
	Position and orientation of microphone (according to Figure 2 in Appendix of Annex 3)		
	Test result for stationary test: dB(A)		
8.6.	Noise level of compressed air sound:		
	Test result for		
	(a) service brake: dB(A)		
	(b) parking brake: dB(A)		
	(c) during the pressure regulator actuation: dB(A)		
9.	Vehicle submitted for approval on:		
10.	Technical service responsible for type-approval tests:		
11.	Date of test report issued by that service:		
12.	Number of test report issued by that service:		
13.	Position of approval mark on the vehicle		
14.	Place		
15.	Date		
16.	Signature		
17.	The following documents, bearing the approval number shown above, are annexed to this document:		
	drawings and/or photographs, diagrams and plans of the engine and of the noise reduction system;		
	list of components, duly identified constituting the noise reduction system.		
18.	Reason for extension of approval:		
19.	Remarks		

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

ANNEX 10

METHODS AND INSTRUMENTS FOR MEASURING THE NOISE MADE BY MOTOR VEHICLES (MEASUREMENT METHOD B)

1. MEASURING INSTRUMENTS

1.1. Acoustic Measurements

The apparatus used for measuring the noise level must be a precision sound-level meter or equivalent measurement system meeting the requirements of Class 1 instruments (inclusive of the recommended windscreen, if used). These requirements are described in "IEC 61672-1:2002:Precision sound level meters", second edition, of the International Electrotechnical Commission (IEC).

Measurements shall be carried out using the "fast" response of the acoustic measurement instrument and the "A" weighting curve also described in "IEC 61672-1:2002". When using a system that includes a periodic monitoring of the A-weighted sound pressure level, a reading should be made at a time interval not greater than 30 ms.

The instruments shall be maintained and calibrated in accordance to the instructions of the instrument manufacturer.

1.2. Compliance with Requirements

Compliance of the acoustic measurement instrumentation shall be verified by the existence of a valid certificate of compliance. These certificates shall be deemed to be valid if certification of compliance with the standards was conducted within the previous 12 months period for the sound calibration device and within the previous 24 months period for the instrumentation system. All compliance testing must be conducted by a laboratory, which is authorized to perform calibrations traceable to the appropriate standards.

1.3. Calibration of the Entire Acoustic Measurement System for Measurement Session

At the beginning and at the end of every measurement session, the entire acoustic measurement system shall be checked by means of a sound calibrator that fulfils the requirements for sound calibrators of precision Class 1 according to IEC 60942: 2003. Without any further adjustment the difference between the readings shall be less than or equal to 0.5 dB. If this value is exceeded, the results of the measurements obtained after the previous satisfactory check shall be discarded.

1.4. Instrumentation for Speed Measurements

The engine speed shall be measured with instrumentation having an accuracy of $\pm 2\%$ or better at the engine speeds required for the measurements being performed.

The road speed of the vehicle shall be measured with instrumentation having an accuracy of at least ± 0.5 km/h, when using continuous measurement devices.

If testing uses independent measurements of speed, this instrumentation must meet specification limits of at least \pm 0.2 km/h.

TITLE: Noise Emissions

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

1.5. Meteorological Instrumentation

The meteorological instrumentation used to monitor the environmental conditions during the test shall include the following devices, which meet at least the given accuracy:

- (a) temperature measuring device, ± 1° C;
- (b) wind speed-measuring device, ± 1.0 m/s;
- barometric pressure measuring device, ± 5 hPa;
- (d) a relative humidity measuring device, ± 5%.

2. CONDITIONS OF MEASUREMENT

2.1. Test Site ⁽¹⁾ and Ambient Conditions

The test site shall be substantially level. The surface of the test track shall be dry. The test site shall be such that when a small omni-directional noise source is placed on its surface at the central point (intersection of the microphone Line PP' and the centreline of the vehicle lane CC'), deviations from hemispherical acoustic divergence shall not exceed $\pm 1 \text{ dB}$.

This condition is deemed to be satisfied if the following requirements are met:

- (a) Within a radius of 50 m from the centre of the track the space is free of large reflecting objects such as fences, rocks, bridges or buildings.
- (b) The test track and the surface of the site are dry and free from absorbing materials such as powdery snow, or loose debris.
- (c) In the vicinity of the microphone, there are no obstacle that could influence the acoustical field and no person is positioned between the microphone and the noise source. The meter observer is positioned so as not to influence the meter reading.

Measurements shall not be made under adverse weather conditions. It must be ensured that the results are not affected by gusts of wind.

The meteorological instrumentation should be positioned adjacent to the test area at a height of 1.2 m \pm 0.02 m. The measurements shall be made when the ambient air temperature is within the range from 5° C to 40° C.

The tests shall not be carried out if the wind speed, including gusts, at microphone height exceeds 5 m/s, during the noise measurement interval.

A value representative of temperature, wind speed and direction, relative humidity, and barometric pressure shall be recorded during the noise measurement interval.

Any noise peak which appears to be unrelated to the characteristics of the general noise level of the vehicle shall be ignored in taking the readings.

⁽¹⁾ In conformity with Annex 8 to this Regulation.

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

The background noise shall be measured for duration of 10 seconds immediately before and after a series of vehicle tests. The measurements shall be made with the same microphones and microphone locations used during the test. The A-weighted maximum noise pressure level shall be reported.

The background noise (including any wind noise) shall be at least 10 dB below the A-weighted noise pressure level produced by the vehicle under test. If the difference between the ambient noise and the measured noise is between 10 and 15 dB(A), in order to calculate the test results the appropriate correction must be substracted from the readings on the noise-level meter, as in the following table:

Difference between ambient noise and noise to be measured dB(A)	10	11	12	13	14	15
Correction dB(A)	0.5	0.4	0.3	0.2	0.1	0.0

2.2. Vehicle

The vehicle tested shall be selected in a way so that that all vehicles of the same type which are put on the market fulfil the requirements of this Regulation. Measurements shall be made without any trailer, except in the case of non-separable vehicles. Measurements shall be made on vehicles at the test mass m_t specified according to the following table:

Vehicle category	Vehicle test mass
M ₁	$m_t = m_{ro}$
N ₁	$m_t = m_{ro}$
N2, N3	$m_t = 50$ kg per kW rated engine power Extra loading to reach the test mass of the vehicle shall be placed above the driven rear axle(s). The extra loading is limited to 75% of the maximum mass allowed for the rear axle. The test mass must be achieved with a tolerance of \pm 5%. If the centre of gravity of the extra loading cannot be aligned with the centre of the rear axle, the test mass of the vehicle shall not exceed the sum of the front axle and the rear axle load in un-laden condition plus the extra loading. The test mass for vehicles with more than two axles shall be the same as for a two-axle vehicle.
M ₂ , M ₃	$m_t = m_{ro} - mass$ of the crew member (if applicable)

^{2.2.1.}

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- 2.2.2. The tyres to be used for the test shall be representative for the vehicle and shall be selected by the vehicle manufacturer and recorded in Annex 9. They shall correspond to one of the tyre sizes designated for the vehicle as original equipment. The tyre is or will be commercially available on the market at the same time as the vehicle ⁽¹⁾. The tyres shall be inflated to the pressure recommended by the vehicle manufacturer for the test mass of the vehicle. The tyres shall have a tread depth of at least 80% of the full tread depth.
- 2.2.3. Before the measurements are started, the engine shall be brought to its normal operating conditions.
- 2.2.4. If the vehicle is fitted with more than two-wheel drive, it shall be tested in the drive which is intended for normal road use.
- 2.2.5. If the vehicle is fitted with fan(s) having an automatic actuating mechanism, this system shall not be interfered with during the measurements.
- 2.2.6. If the vehicle is equipped with an exhaust system containing fibrous materials, the exhaust system is to be conditioned before the test according to Annex 5.

3. METHODS OF TESTING

3.1. Measurement of Noise of Vehicles in Motion

3.1.1. General Conditions of Test

Two Lines, AA' and BB', parallel to Line PP' and situated respectively 10 m forward and 10 m rearward of Line PP' shall be marked out on the test runway

At least four measurements shall be made on each side of the vehicle and for each gear. Preliminary measurements may be made for adjustment purposes, but shall be disregarded.

The microphone shall be located at a distance of 7.5 m \pm 0.05 m from the reference Line CC' of the track and 1.2 m \pm 0.02 m above the ground.

The reference axis for free field conditions (see IEC 61672-1:2002) shall be horizontal and directed perpendicularly towards the path of the vehicle Line CC'.

⁽¹⁾ The tyre contribution for overall sound emission being important, this vehicle Regulation has taken into account the tyre/road sound emission regulations. Traction tyres, snow tyres and special use tyres according to Regulation No. 117 as amended by the 02 series of amendments (2010) shall be excluded during type-approval- and COP-measurements on request of the manufacturer.

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.1.2. Specific Test Conditions for Vehicles
- 3.1.2.1. Vehicles of Category M_1 , $M_2 \le 3500$ kg, N_1

The path of the centreline of the vehicle shall follow Line CC' as closely as possible throughout the entire test, from the approach to Line AA' until the rear of the vehicle passes Line BB'. If the vehicle is fitted with more than two-wheel drive, test it in the drive selection which is intended for normal road use.

If the vehicle is fitted with an auxiliary manual transmission or a multi-gear axle, the position used for normal urban driving shall be used. In all cases, the gear ratios for slow movements, parking or braking shall be excluded.

The test mass of the vehicle shall be according to the table of Paragraph 2.2.1.

The test speed v_{test} is 50 km/h ± 1 km/h. The test speed must be reached, when the reference point is at Line PP'.

3.1.2.1.1. Power to Mass Ratio Index (PMR)

PMR is defined as follows:

 $PMR = (P_n / m_t) \times 1000 \text{ kg/kW}$

The power to mass ratio index (PMR) is used for the calculation of acceleration.

3.1.2.1.2. Calculation of Acceleration

Acceleration calculations are applicable to M_1 , N_1 and $M_2 \le 3500$ kg Categories only.

All accelerations are calculated using different speeds of the vehicle on the test track ⁽¹⁾. The formulas given are used for the calculation of a_{wot} , a_{wo

Due to the definition of the reference point for the vehicle the length of the vehicle (I_{veh}) is considered differently in the formula below. If the reference point is in the front of the vehicle, then $I = I_{veh}$, mid: $I = \frac{1}{2} I_{veh}$ and rear: I = 0.

3.1.2.1.2.1. Calculation procedure for vehicles with manual transmission, automatic transmission, adaptive transmissions and transmissions with variable gear ratios (CVT's) tested with locked gear ratios:

 $a_{wot test} = ((v_{BB}/3.6)^2 - (v_{AA}/3.6)^2) / (2 \times (20+I))$

 $a_{wot \ test}$ used in the determination of gear selection shall be the average of the four $a_{wot \ test, \ i}$ during each valid measurement run.

Pre-acceleration may be used. The point of depressing the accelerator before Line AA' shall be reported in the vehicle and test data (see Annex 9).

TITLE: Noise Emissions

Jul/2012

⁽¹⁾ See Annex 8, Figure 1.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

3.1.2.1.2.2. Calculation procedure for vehicles with automatic transmissions, adaptive transmissions and CVT's tested with non-locked gear ratios:

 $a_{wot test}$ used in the determination of gear selection shall be the average of the four $a_{wot test, i}$ during each valid measurement run.

If devices or measures described in Paragraph 3.1.2.1.4.2., can be used to control transmission operation for the purpose of achieving test requirements, calculate $a_{wot test}$ using the equation:

 $a_{wot test} = ((v_{BB'}/3.6)^2 - (v_{AA'}/3.6)^2) / (2 \times (20+I))$

Pre-acceleration may be used.

If no devices or measures described in Paragraph 3.1.2.1.4.2. are used, calculate a_{wot test} using the equation:

 $a_{wot_{testPP-BB}} = ((v_{BB'}/3.6)^2 - (v_{PP'}/3.6)^2) / (2 \times (10+I))$

Pre-acceleration shall not be used.

The location of depressing the accelerator shall be where the reference point of the vehicle passes Line AA'.

3.1.2.1.2.3. Target Acceleration

The target acceleration a_{urban} defines the typical acceleration in urban traffic and is derived from statistical investigations. It is a function depending on the PMR of a vehicle.

The target acceleration a_{urban} is defined by:

 $a_{urban} = 0.63 \times \log_{10} (PMR) - 0.09$

3.1.2.1.2.4. Reference Acceleration

The reference acceleration a_{wot} ref defines the required acceleration during the accelerated test on the test track. It is a function depending on the power-to-mass ratio of a vehicle. That function is different for specific vehicle categories.

The reference acceleration a_{wot ref} is defined by:

a _{wot ref} = 1.59 × log ₁₀ (PMR) – 1.41	for PMR ≥ 25
$a_{wot ref} = a_{urban} = 0.63 \times log_{10} (PMR) - 0.09$	for PMR < 25

3.1.2.1.3. Partial Power Factor k_P

The partial power factor k_P (see Paragraph 3.1.3.1.) is used for the weighted combination of the test results of the acceleration test and the constant speed test for vehicles of Category M_1 and N_1 .

In cases other than a single gear test $a_{wot ref}$ has to be used instead of a $a_{wot test}$ (see Paragraph 3.1.3.1.).

TITLE: Noise Emissions

Jul/2012

Regulation No. 51-02 PAGE: 56

© InterRegs Ltd 2012

COUNTRY :E.C.E.

ORIGINAL : UNITED NATIONS of January 11, 1983

3.1.2.1.4. Gear Ratio Selection

The selection of gear ratios for the test depends on their specific acceleration potential a_{wot} under full throttle condition, according to the reference acceleration a_{wot} ref required for the full throttle acceleration test.

Some vehicles may have different software programs or modes for the transmission (e.g. sporty, winter, adaptive). If the vehicle has different modes leading to valid accelerations, the vehicle manufacturer has to prove to the satisfaction of the technical service, that the vehicle is tested in the mode which achieves an acceleration being closest to a_{wot ref}.

3.1.2.1.4.1. Vehicles with manual transmission, automatic transmissions, adaptive transmissions or CVT's tested with locked gear ratios

The following conditions for selection of gear ratios are possible:

- (a) If one specific gear ratio gives an acceleration in a tolerance band of ± 5% of the reference acceleration a_{wot ref}, not exceeding 2.0 m/s², test with that gear ratio.
- (b) If none of the gear ratios give the required acceleration, then choose a gear ratio i, with an acceleration higher and a gear ratio i+1, with an acceleration lower than the reference acceleration. If the acceleration value in gear ratio i does not exceed 2.0 m/s², use both gear ratios for the test. The weighting ratio in relation to the reference acceleration a_{wot ref} is calculated by:

 $k = (a_{wot ref} - a_{wot (i+1)})/(a_{wot (i)} - a_{wot (i+1)})$

- (c) if the acceleration value of gear ratio i exceeds 2.0 m/s², the first gear ratio shall be used that gives an acceleration below 2.0 m/s² unless gear ratio i+1 provides acceleration less than a_{urban}. In this case, two gears, i and i+1 shall be used, including the gear i with acceleration exceeding 2.0 m/s². In other cases, no other gear shall be used. The achieved acceleration a_{wot test} during the test shall be used for the calculation of the part power factor k_P instead of a_{wot ref}.
- (d) If the vehicle has a transmission in which there is only one selection for the gear ratio the acceleration test is carried out in this vehicle gear selection. The achieved acceleration is then used for the calculation of the part power factor k_P instead of a_{wot ref}.
- (e) If rated engine speed is exceeded in a gear ratio before the vehicle passes BB' the next higher gear shall be used.
- 3.1.2.1.4.2. Vehicles with automatic transmission, adaptive transmissions and CVT's tested with non-locked gear ratios:

The gear selector position for full automatic operation shall be used.

The acceleration value a_{wot test} shall be calculated as defined in Paragraph 3.1.2.1.2.2.

The test may then include a gear change to a lower range and a higher acceleration. A gear change to a higher range and a lower acceleration is not allowed. A gear shifting to a gear ratio which is not used in urban traffic shall be avoided.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

Therefore, it is permitted to establish and use electronic or mechanical devices, including alternate gear selector positions, to prevent a downshift to a gear ratio which is typically not used at the specified test condition in urban traffic.

The achieved acceleration a_{wot test} shall be greater or equal to a_{urban}.

If possible, the manufacturer shall take measures to avoid an acceleration value $a_{wot test}$ greater than 2.0 m/s².

The achieved acceleration a wot test is then used for the calculation of the partial power factor k_p (see Paragraph 3.1.2.1.3.) instead $a_{wot ref}$.

3.1.2.1.5. Acceleration Test

The manufacturer shall define the position of the reference point in front of Line AA' of fully depressing the accelerator. The accelerator shall be fully depressed (as rapidly as is practicable) when the reference point of the vehicle reaches the defined point. The accelerator shall be kept in this depressed condition until the rear of the vehicle reaches Line BB'. The accelerator shall then be released as rapidly as possible. The point of fully depressing the accelerator shall be reported in the vehicle and test data (Annex 9). The technical service shall have the possibility of pretesting.

In the case of articulated vehicles consisting of two non-separable units regarded as a single vehicle, the semi-trailer shall be disregarded in determining when Line BB' is crossed.

3.1.2.1.6. Constant Speed Test

The constant speed test shall be carried out with the same gear(s) specified for the acceleration test and a constant speed of 50 km/h with a tolerance of \pm 1 km/h between AA' and BB'. During the constant speed test the acceleration control shall be positioned to maintain a constant speed between AA' and BB' as specified. If the gear is locked for the acceleration test, the same gear shall be locked for the constant speed test.

The constant speed test is not required for vehicles with a PMR < 25.

3.1.2.2. Vehicles of Categories M₂ > 3 500 kg, M₃, N₂, N₃

The path of the centreline of the vehicle shall follow Line CC' as closely as possible throughout the entire test, from the approach to Line AA' until the rear of the vehicle passes Line BB'. The test shall be conducted without a trailer or semi-trailer. If a trailer is not readily separable from the towing vehicle the trailer shall be ignored when considering the crossing of Line BB'. If the vehicle incorporates equipment such as a concrete mixer, a compressor, etc, this equipment shall not be in operation during the test. The test mass of the vehicle shall be according to the table of Paragraph 2.2.1.

Target conditions of Category $M_2 > 3500 \text{ kg}$, N_2 :

ORIGINAL : UNITED NATIONS of January 11, 1983

When the reference point passes Line BB', the engine speed $n_{BB'}$ shall be between 70% and 74% of speed S, at which the engine develops its rated maximum power, and the vehicle speed shall be 35 km/h ± 5 km/h. Between Line AA' and Line BB' a stable acceleration condition shall be ensured.

Target conditions of Category M₃, N₃:

When the reference point passes Line BB', the engine speed $n_{BB'}$ shall be between 85% and 89% of speed S, at which the engine develops its rated maximum power, and the vehicle speed shall be 35 km/h ± 5 km/h. Between Line AA' and Line BB' a stable acceleration condition shall be ensured.

- 3.1.2.2.1. Gear Ratio Selection
- 3.1.2.2.1.1. Vehicles with Manual Transmissions

Stable acceleration condition shall be ensured. The gear choice is determined by the target conditions. If the difference in speed exceeds the given tolerance, then two gears should be tested, one above and one below the target speed.

If more than one gear fulfils the target conditions select that gear which is closest to 35 km/h. If no gear fulfils the target condition for v_{test} two gears shall be tested, one above and one below v_{test} . The target engine speed shall be reached in any condition.

A stable acceleration condition shall be ensured. If a stable acceleration cannot be ensured in a gear, this gear has to be disregarded.

3.1.2.2.1.2. Vehicles with automatic transmissions, adaptive transmissions and transmissions with variable gear ratio (CVT's)

The gear selector position for full automatic operation shall be used. The test may then include a gear change to a lower range and a higher acceleration. A gear change to a higher range and a lower acceleration is not allowed. A gear shifting to a gear ratio which is not used in urban traffic, at the specified test condition, shall be avoided. Therefore, it is permitted to establish and use electronic or mechanical devices to prevent a downshift to a gear ratio which is typically not used at the specified test condition in urban traffic.

If the vehicle includes a transmission design, which provides only a single gear selection (drive), which limits engine speed during the test, the vehicle shall be tested using only a target vehicle speed. If the vehicle uses an engine and transmission combination that does not fulfil Paragraph 3.1.2.2.1.1., the vehicle shall be tested using only the target vehicle speed. The target vehicle speed for the test is $v_{BB'} = 35 \text{ km/h} \pm 5 \text{ km/h}$. A gear change to a higher range and a lower acceleration is allowed after the reference point of the vehicle passes Line PP'. Two tests must be performed, one with the end speed of $v_{test} = v_{BB'} + 5 \text{ km/h}$, and one with the end speed of $v_{test} = v_{BB'} - 5 \text{ km/h}$. The reported noise level is that result which is related to the test with the highest engine speed obtained during the test from AA' to BB'.

ORIGINAL :UNITED NATIONS of January 11, 1983

3.1.2.2.2. Acceleration Test

When the reference point of the vehicle reaches the Line AA' the accelerator control shall be fully depressed (without operating the automatic downshift to a lower range than normally used in urban driving) and held fully depressed until the rear of the vehicle passes BB', but the reference point shall be at least 5 m behind BB'. The accelerator control shall then be released.

In the case of articulated vehicles consisting of two non-separable units regarded as a single vehicle, the semi-trailer shall be disregarded in determining when Line BB' is crossed.

3.1.3. Interpretation of Results

The maximum A-weighted sound pressure level indicated during each passage of the vehicle between the two Lines AA' and BB' shall be noted. If a noise peak obviously out of character with the general sound pressure level is observed, the measurement shall be discarded. At least four measurements for each test condition shall be made on each side of the vehicle and for each gear ratio. Left and right side may be measured simultaneously or sequentially. The first four valid consecutive measurement results, within 2 dB(A), allowing for the deletion of non valid results (see Paragraph 2.1.), shall be used for the calculation of the final result for the given side of the vehicle. The results of each side shall be averaged separately. The intermediate result is the higher value of the two averages mathematically rounded to the first decimal place.

The speed measurements at AA', BB', and PP' shall be noted and used in calculations to the first significant digit after the decimal place.

The calculated acceleration a_{wot test} shall be noted to the second digit after the decimal place.

3.1.3.1. Vehicles of Categories M_1 , N_1 and $M_2 \le 3500$ kg

The calculated values for the acceleration test and the constant speed test are given by:

 $L_{wot rep} = L_{wot (i+1)} + k \times (L_{wot(i)} - L_{wot (i+1)})$

 $L_{crs rep} = L_{crs(i+1)} + k \times (L_{crs(i)} - L_{crs(i+1)})$

Where $k = (a_{wot ref} - a_{wot} (i+1))/(a_{wot} (i) - a_{wot} (i+1))$

In the case of a single gear ratio test the values are the test result of each test.

The final result is calculated by combining $L_{wot rep}$ and $L_{crs rep}$. The equation is:

 $L_{urban} = L_{wot rep} - k_P \times (L_{wot rep} - L_{crs rep})$

The weighting factor k_P gives the part power factor for urban driving. In cases other than a single gear test k_P is calculated by:

 $k_P = 1 - (a_{urban} / a_{wot ref})$

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :I	JNITED NATIONS of January 11, 1983
	If only one gear was specified for the test $k_{\mbox{\tiny P}}$ is given by:
	$k_{P} = 1 - (a_{urban} / a_{wot test})$
	In cases where a _{wot test} is less than a _{urban} :
	$k_{P} = 0$
3.1.3.2.	Vehicles of Categories $M_2 > 3500 \text{ kg}$, M_3 , N_2 , N_3
	When one gear is tested the final result is equal to the intermediate result. When two gears are tested the arithmetic mean of the intermediate results shall be calculated.
3.2.	Measurement of Noise Emitted by Stationary Vehicles
3.2.1.	Sound Level in the Vicinity of Vehicles
	The measurement results shall be entered into the test report referred to in Annex 9.
3.2.2.	Acoustic Measurements
	A precision sound level meter, or equivalent measuring system, as defined in Paragraph 1.1. of this Annex shall be used for the measurements.
3.2.3.	Test Site – Local Conditions (see Appendix of Annex 3, Figure 1)
3.2.3.1.	In the vicinity of the microphone, there shall be no obstacle that could influence the acoustical field and no person shall remain between the microphone and the noise source. The meter observer shall be positioned so as not to influence the meter reading.
3.2.4.	Disturbance Sound and Wind Interference
	Readings on the measuring instruments produced by ambient noise and wind shall be at least 10 dB(A) below the sound level to be measured. A suitable windscreen may be fitted to the microphone provided that account is taken of its effect on the sensitivity of the microphone (see Paragraph 1.1. of this Annex).
3.2.5.	Measuring Method
3.2.5.1.	Nature and Number of Measurements
	The maximum sound level expressed in A-weighted decibels (dB(A)) shall be measured during the operating period referred to in Paragraph 3.2.5.3.2.1.
	At least three measurements shall be taken at each measuring point.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

3.2.5.2. Positioning and Preparation of the Vehicle

The vehicle shall be located in the centre part of the test area with the gear selector in the neutral position and the clutch engaged. If the design of the vehicle does not allow this, the vehicle shall be tested in conformity with the manufacturer's prescriptions for stationary engine testing. Before each series of measurements, the engine must be brought to its normal operating condition, as specified by the manufacturer.

If the vehicle is fitted with fan(s) having an automatic actuating mechanism, this system shall not be interfered with during the sound level measurements.

The engine hood or compartment cover, if so fitted, shall be closed.

- 3.2.5.3. Measuring of Noise in Proximity to the Exhaust (see Appendix of Annex 3, Figure 1)
- 3.2.5.3.1. Positions of the Microphone
- 3.2.5.3.1.1. The microphone shall be located at a distance of $0.5 \text{ m} \pm 0.01 \text{ m}$ from the reference point of the exhaust pipe defined in Figure 1, and at an angle of 45° ($\pm 5^{\circ}$) to the flow axis of the pipe termination. The microphone shall be at the height of the reference point, but not less than 0.2 m from the ground surface. The reference axis of the microphone shall lie in a plane parallel to the ground surface and shall be directed toward the reference point on the exhaust outlet. If two microphone positions are possible, the location farthest laterally from the vehicle longitudinal centreline shall be used. If the flow axis of the exhaust outlet pipe is at 90° to the vehicle longitudinal centreline, the microphone shall be located at the point, which is farthest from the engine.
- 3.2.5.3.1.2. For vehicles having an exhaust provided with outlets spaced more than 0.3 m apart, measurements shall be made for each outlet. The highest level shall be recorded.
- 3.2.5.3.1.3. In the case of an exhaust provided with two or more outlets spaced less than 0.3 m apart and which are connected to the same silencer, only one measurement is made; the microphone position is related to the outlet nearest to one extreme edge of the vehicle or, when such outlet does not exist, to the outlet which is the highest above the ground.
- 3.2.5.3.1.4. For vehicles with a vertical exhaust (e.g. commercial vehicles) the microphone shall be placed at the height of the exhaust outlet. Its axis shall be vertical and oriented upwards. It shall be placed at a distance of $0.5 \text{ m} \pm 0.01 \text{ m}$ from the exhaust pipe reference point, but never less than 0.2 m from the side of the vehicle nearest to the exhaust.
- 3.2.5.3.1.5.1. For exhaust outlets located under the vehicle body, the microphone shall be located a minimum of 0.2 m from the nearest part of the vehicle, at a point closest to, but never less than 0.5 m from the exhaust pipe reference point, and at a height of 0.2 m above the ground, and not in line with the exhaust flow. The angularity requirement in Paragraph 3.2.5.3.1.2. may not be met in some cases.

COUNTRY :E.C.E.

© InterRegs Ltd 2012

ORIGINAL :UNITED NATIONS of January 11, 1983

- 3.2.5.3.2. Operating Conditions of the Engine
- 3.2.5.3.2.1. Target Engine Speed

The target engine speed is defined as:

- (a) 75% of the engine speed S for vehicles with a rated engine speed \leq 5 000 min⁻¹
- (b) 3 750 min⁻¹ for vehicles with a rated engine speed above 5 000 min⁻¹ and below 7 500 min⁻¹
- (c) 50% of the engine speed S for vehicles with a rated engine speed $\ge 7500 \text{ min}^{-1}$.

If the vehicle cannot reach the engine speed as stated above, the target engine speed shall be 5% below the maximum possible engine speed for that stationary test.

3.2.5.3.2.2. Test Procedure

The engine speed shall be gradually increased from idle to the target engine speed, not exceeding a tolerance band of \pm 3% of the target engine speed, and held constant. Then the throttle control shall be rapidly released and the engine speed shall return to idle. The noise level shall be measured during a period of operation consisting of a maintenance of constant engine speed of 1 second and throughout the entire deceleration period, the maximum sound level meter reading, mathematically rounded to the first decimal place, is taken as the test value.

3.2.5.3.2.3. Test Validation

The measurement shall be regarded as valid if the test engine speed does not deviate from the target engine speed by more than $\pm 3\%$ for at least 1 second.

3.2.6. Results

At least three measurements for each test position shall be made. The maximum A-weighted sound pressure level indicated during each of the three measurements shall be recorded. The first three valid consecutive measurement results, within 2 dB(A), allowing for the deletion of non valid results (see Paragraph 2.1. except the specifications of the test site), shall be used for the determination of the final result for the given measurement position. The maximum sound level, for all measurement positions, and of the three measurement results, constitutes the final result.

E/ECE/324/Rev.1/Add.50/Rev.3-E/ECE/TRANS/505/Rev.1/Add.50/Rev.3

5 February 2016

Agreement

Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these Prescriptions*

(Revision 2, including the amendments which entered into force on 16 October 1995)

Addendum 50 - Regulation No. 51

Revision 3

03 series of amendments - Date of entry into force: 20 January 2016

Uniform provisions concerning the approval of motor vehicles having at least four wheels with regard to their sound emissions

This document is meant purely as documentation tool. The authentic and legal binding text is: ECE/TRANS/WP.29/2015/62.

UNITED NATIONS

^{*} Former title of the Agreement: Agreement Concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts, done at Geneva on 20 March 1958.

E/ECE/324/Rev.1/Add.50/Rev.3 E/ECE/TRANS/505/Rev.1/Add.50/Rev.3

1. Scope

This Regulation contains provisions on the sound emitted by motor vehicles and applies to vehicles of categories M and N.¹

The specifications in this Regulation are intended to reproduce the sound levels which are generated by vehicles during normal driving in urban traffic.

2. Definitions

For the purpose of this Regulation,

- 2.1. "*Approval of a vehicle*" means the approval of a vehicle type with regard to sound;
- 2.2. "*Vehicle type*" means a category of motor vehicles which do not differ in such essential respects as:
- 2.2.1. For vehicles tested according to Annex 3, paragraph 3.1.2.1.:
- 2.2.1.1. The shape or materials of the engine compartment and its soundproofing;
- 2.2.1.2. The type of engine (positive or compression ignition, two- or four-stroke, reciprocating or rotary piston), number and capacity of cylinders, number and type of carburettors or injection system, arrangement of valves, or the type of electric motor;
- 2.2.1.3. Rated maximum net power and corresponding rated engine speed(s); however if the rated maximum net power and the corresponding rated engine speed differs only due to different engine mappings, these vehicles may be regarded as from the same type;
- 2.2.1.4. The silencing system.
- 2.2.2. For vehicles tested according to Annex 3, paragraph 3.1.2.2.:
- 2.2.2.1. The shape or materials of the engine compartment and its soundproofing;
- 2.2.2.2. The type of engine (positive or compression ignition, two- or four-stroke, reciprocating or rotary piston), number and capacity of cylinders, type of injection system, arrangement of valves, rated engine speed (S), or the type of electric motor;
- 2.2.2.3. Vehicles having the same type of engine and/or different overall gear ratios may be regarded as vehicles of the same type;
- 2.3. However, if the differences in paragraph 2.2.2. provide for different target conditions, as described in paragraph 3.1.2.2. of Annex 3, these differences are to be considered as a change of type;

www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html

As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/TRANS/WP.29/78/Rev.3, para. 2 -

000077

E/ECE/324/Rev.1/Add.50/Rev.3 E/ECE/TRANS/505/Rev.1/Add.50/Rev.3

17-11-		Limit Values (dB(A))			
venicie category	Vehicles used for the carriage of passengers	Phase 1	Phase 2	Phase 3	
M ₁	PMR ≤ 120	72	70	68	
	120 < PMR ≤ 160	73	71	69	
	PMR > 160	75	73	71	
	PMR > 200, no. of seats \leq 4, R-point height < 450mm from the ground	75	74	72	
	$M \le 2.5$ t	72	70	69	
	$2.5 t < M \le 3.5 t$	74	72	71	
M ₂	$M > 3.5 \text{ t}; P_n \le 135 \text{ kW}$	75	73	72	
	$M > 3.5 \text{ t}; P_n > 135 \text{ kW}$	75	74	72	
M ₃	$P_n \leq 150 \text{ kW}$	76	74	73	
	$150 \text{ kW} < P_n \le 250 \text{ kW}$	78	77	76	
	$P_n > 250 \text{ kW}$	80	78	77	
Vehicle category	Vehicles used for the carriage of goods	Phase 1	Phase 2	Phase 3	
	$M \leq 2.5 \mathrm{t}$	72	71	69	
N_1	M > 2.5 t	74	73	71	
N	$P_n \le 135 kW$	77	75	74	
N ₂	$P_n > 135 \text{ kW}$	78	76	75	
N ₃	$P_n \leq 150 \text{ kW}$	79	77	76	
	$150 \text{ kW} < P_n \le 250 \text{ kW}$	81	79	77	
	$P_n > 250 \text{ kW}$	82	81	79	

6.2.2.1. For vehicle types of category M_1 derived from N_1 vehicle types having a technically permissible maximum laden mass above 2.5 tons and a R-point height greater than 850 mm from the ground, the limits of vehicles types of category N_1 having a technically permissible maximum laden mass above 2.5 tons apply.

6.2.2.2. For vehicle types designed for off-road⁴ use, the limit values shall be increased by 2 dB(A) for M_3 and N_3 vehicles category and 1 dB(A) for any other vehicle category.

For vehicle types of category M_1 the increased limit values for off-road vehicles are only valid if the technically permissible maximum laden mass > 2 tons.

6.2.2.3. Limit values shall be increased by 2 dB(A) for wheelchair accessible vehicles of category M_1 constructed or converted specifically so that they accommodate one or more persons seated in their wheelchairs when travelling on the road, and armoured vehicles, as defined in paragraph 2.5.2. of R.E.3.

⁴ As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3.), document ECE/TRANS/WP.29/78/Rev.3, para. 2 -

www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html