

CUMPLIMIENTO DEL DS90 PARA LAS DESCARGAS DE LAS PLANTAS DE TRATAMIENTO DE AGUA POTABLE (PTAP)

INFORME FINAL

OCTUBRE 2023

C:\Users\gahum\Documents\Proyectos\D90\Etapa 1\Memoria\D90-1-MEM-SISS.docx

ANDESS

CUMPLIMIENTO DEL DS90 PARA LAS DESCARGAS DE LAS PLANTAS DE TRATAMIENTO DE AGUA POTABLE (PTAP)

INFORME FINAL

INDICE

	ITEM	MATERIA	PAG.
1.	GENI	FRALIDADES	1
	1.1	OBJETIVO	
	1.2	ALCANCE	1
	1.3	ANTECEDENTES BÁSICOS	2
2.	NOR	MATIVA	4
	2.1.	DECRETO SUPREMO N°90 VIGENTE	
	2.2.	DECRETO SUPREMO N°90 EN REVISIÓN	4
	2.2.1		4
	2.2.2		
	2.2.3		7
	2.2.4		7
	2.3.	DESCARGAS A SISTEMAS DE ALCANTARILLADO	8
	2.4.	COMPARACIÓN CON NORMA ESPECÍFICA	9
	. PRO	CESOS DE POTABILIZACIÓN Y TRATAMIENTO DE AGUAS RESIDUALES EN P	LANTAS DE TRATAMIENTO DE
Α	GUA PO	TABLE	11
	3.1.	PROCESOS DE POTABILIZACIÓN EN FUNCIÓN DE LA CALIDAD DEL AGUA CRUDA	11
	3.2.	CARACTERIZACIÓN DE LAS AGUAS RESIDUALES	13
	3.3.	PROCESOS TRATAMIENTO DE AGUAS RESIDUALES	15
	3.3.		15
	3.3	2. Recirculación de aguas residuales	17
	3.4.	CALIDAD DE LODOS GENERADOS	17
	. SOL	UCIONES DE TRATAMIENTO DE LAS AGUAS RESIDUALES DE PLANTAS DE T	RATAMIENTO DE AGUA
F	OTABLE	PROPUESTOS POR EMPRESAS SANITARIAS	
	4.1.	GENERALIDADES	21
	4.2.	AGUAS ANDINAS	
	4.3.	NUEVA ATACAMA	
	4.4.	ESSBIO - NUEVOSUR	23
	4.4.		23
	4.4.		25
	4.4.		27
	4.5.	ESVAL – AGUAS DEL VALLE	29
	4.5.		
	4.5	2. Caso PTAP Las Rojas	31
1	5. CO	NCLUSIONES Y RECOMENDACIONES	33

INDICE TABLAS

ITEM	MATERIA	PAG.
TARLA N° 2 1: CARGA CONTAMINANTE		5
TABLA N° 2.2: LÍMITES MÁXIMOS PERMITIDOS PARA DESC	ARGAS DE AGUAS RESIDUALES	6
TABLA N° 2.3: DECRETO N° 609 - LÍMITES MÁXIMOS DE LI	OS PRINCIPALES CONTAMINANTES DE INTERÉS PARA DESCARGAS AL	
		8
TABLA N° 2.4 COMPARACIÓN NORMATIVA DE MISSISSIPP	I Y CHILENA	10
TABLA N° 3.1: RES. SISS N°4426-2016. CLASIFICACIÓN	FUENTES	11
TABLA N° 3.2: PROCESOS DE POTABILIZACIÓN EN FUNCIÓN	N DE LA CALIDAD DEL AGUA CRUDA	12
TABLA N° 3.3: RESIDUOS PRESENTES EN EL AGUA CRUDA (FUENTE: AWWA, 2002)	13
TABLA N° 3.4: RESIDUOS AGREGADOS DURANTE EL TRATA	MIENTO (FUENTE: AWWA, 2002)	14
TABLA N° 3.5: POTENCIALES FLUJOS DE AGUAS RESIDUALE	S A RECIRCULAR	17
	SANITARIAS	
TABLA N° 4.2: SOLUCIONES PROPUESTAS POR AGUAS AN	DINAS	22
	4CAMA	
	UEVOSUR	
	BOS — CONSTITUCIÓN	
TABLA N° 4.6: OPEX PTAP PIEDRA DE LOBOS – CONSTI	TUCIÓN	26
	TTUCIÓN	
Tabla N° 4.8: Dimensionamiento PTAP La Mochita	- Concepción	28
TABLA N° 4.9: OPEX PTAP LA MOCHITA – CONCEPCIÓN	V	28
TABLA N° 4.10: RECONSTITUCIÓN CAPEX PTAP LA MO	chita – Concepción	29
TABLA N° 4.11: SOLUCIONES PROPUESTAS POR ÁGUAS D	EL VALLE	29
TABLA N° 4.12: SOLUCIONES PROPUESTAS POR ESVAL		30
TABLA N° 4.15: CAPEX PTAP LAS ROJAS		32
<u> </u>	NDICE FIGURAS	
	MATERIA	
FIGURA N° 2.1: NORMATIVAS AGUA RESIDUAL		10
FIGURA N° 3.1: PROCESOS TRATAMIENTO CONVENCIONA	al para aguas tipo III y tratamiento de aguas residuales	13
FIGURA N° 3.2: TRATAMIENTO DE AGUAS RESIDUALES		16
FIGURA N° 3.3: PROCESOS TRATAMIENTO LODOS		16
Figura N° 4.1: Soluciones propuestas por Nueva A	TACAMA	23
FIGURA N° 4.2: SOLUCIONES PROPUESTAS POR ESSBIO -	Nuevosur	25
	N	
FIGURA N° 4.4: PTAP LA MOCHITA – CONCEPCIÓN		27
Figura N° 4.5: Soluciones propuestas por Aguas d	EL VALLE	30
Figura N° 4.6: Soluciones propuestas por ESVAL		31
FIGURA N° 4.7: PTAP LAS ROJAS – AGUAS DEL VALLE		31

ANDESS

CUMPLIMIENTO DEL DS90 PARA LAS DESCARGAS DE LAS PLANTAS DE TRATAMIENTO DE AGUA POTABLE (PTAP)

INFORME FINAL

1. GENERALIDADES

1.1 Objetivo

En el proceso de producción de agua potable se generan lodos en las distintas etapas del tratamiento producto de la remoción de la turbiedad del agua que ingresa a las PTAP. Estos lodos, generados en las PTAP, son en general restituidos a la cuenca del río de origen, aguas abajo de la captación.

En el marco de la actualización del DS N°90/00 del MINSEGPRES, la autoridad podría exigir que este tipo de vertidos cumpla los requerimientos estipulados en la Norma de descarga, aun en los casos en que éstas fueron autorizadas previo a la entrada en vigencia de la normativa.

Por lo tanto, el objetivo de este estudio es:

- Analizar el DS N°90/00 y su actualización en revisión, en particular los requisitos que deben cumplir las descargas de las aguas residuales generadas en plantas de tratamiento de agua potable de tipo convencional.
- Recopilar, a partir de estudios ya existentes, las instalaciones requeridas, su valorización y los gastos asociados, para que las descargas de las PTAP cumplan con el D.S.90 (vigente y en revisión), lo que incluye tanto el tratamiento de las descargas como el tratamiento y disposición final de los lodos generados en el tratamiento de estas descargas.
- Recomendar diferentes alternativas para cumplir con el tratamiento de las aguas residuales de las plantas de tratamiento de agua potable.

1.2 Alcance

De acuerdo a lo solicitado este Informe Técnico considera los siguientes puntos, que se presentarán como capítulos del informe:

IFARLE Ingenieros Civiles Consultores Ltda.

Maria de la companya del la companya de la companya de la companya del la companya de la companya del la companya d

N°	Capítulo
1	Generalidades
2	Normativa
3	Procesos de potabilización y tratamiento de aguas residuales en plantas de tratamiento de agua
4	Soluciones de tratamiento de las aguas residuales de plantas de tratamiento de agua potable propuestas por Empresas Sanitarias
5	Conclusiones y recomendaciones

1.3 Antecedentes básicos

Para el desarrollo del estudio se considera los siguientes antecedentes principales:

- Ord. SISS N° 2.448 del 04.08.2023 y respuestas de Empresas Sanitarias.
- Anteproyecto de la Revisión del Decreto Supremo N° 90, de 2000, del Ministerio Secretaría General de la Presidencia, que establece la Norma de Emisión para la Regulación de Contaminantes Asociados a las Descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales (2021).
- 1er Comité Operativo Ampliado (14 de julio de 2021).
- 2°Comité Operativo Ampliado (17 de agosto de 2023).
- Análisis Ambiental Estratégico Tratamiento de Lodos y Cumplimiento D.S.90 para PTAP Florida y Complejo Vizcachas. (ECOS 2021, Documento y Resumen Ejecutivo): Entrega una primera opinión ambiental estratégica de escenarios de implementación de un sistema de tratamiento de lodos para dar cumplimiento del DS90/2000 en las PTAP La Florida y Las Vizcachas.
- Estudio de caracterización de lodos y alternativas de disposición y valorización.
 (CETAQUA, 2019): Análisis preliminar orientado a identificar potenciales alternativos de valorización de los lodos generados en los procesos de potabilización del agua, por lo que incluye información de interés relativa a la caracterización de los lodos.

IFARLE Ingenieros Civiles Consultores Ltda.

CONTROL OF THE PROPERTY OF T

- Soluciones de tratamiento para los lodos de agua potable. (CIRSEE, 2005):
 Estudio de carácter preliminar motivado por la futura aplicación del DS90 a las
 PTAP de la Empresa. Incluyó elementos de caracterización de la situación a esa
 fecha, tecnologías de tratamiento, su dimensionamiento, y planteamiento de
 cantidades/origen de los lodos a tratar (imposibilidad de tratar el 100%).
- Fernández S. (2015). Tratamiento y disposición de aguas residuales de plantas de tratamiento de agua potable en Chile. Memoria para optar al título de Ingeniero Civil. Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile.
- Matamoros J. y Ahumada G. (2005), Sistemas de Tratamiento de Lodos en Plantas de Agua Potable, Il Simposio Latinoamericano de Lodos y Biosólidos, AIDIS.

2. NORMATIVA

2.1. Decreto Supremo N°90 vigente

El Decreto Supremo N°90, promulgado el 30 de mayo de 2000 y publicado el 7 de marzo de 2001 por el Ministerio Secretaría General de la Presidencia, establece la norma de emisión para la regulación de contaminantes asociados a las descargas de residuos líquidos a aguas marinas y continentales superficiales (MINSEGPRES, 2001).

Tiene como objetivo de protección ambiental prevenir la contaminación de las aguas marinas y continentales superficiales de la República, mediante el control de contaminantes asociados a los residuos líquidos que se descargan a estos cuerpos receptores (MINSEGPRES, 2001).

Este decreto establece la concentración máxima de contaminantes permitida para residuos líquidos descargados por las fuentes emisoras, considerando los diferentes cuerpos de agua marinos y continentales superficiales (MINSEGPRES, 2001). Se incluyen así cuerpos de agua fluviales (considerando o no capacidad de dilución), agua lacustre y agua marina dentro y fuera de la zona de protección litoral.

2.2. Decreto Supremo N°90 en revisión

2.2.1. Modificaciones

A continuación, se indican las principales modificaciones consideradas en el anteproyecto:

- Concentraciones máximas permitidas en las descargas a Estuarios (de tabla 1 o 2cuerpo fluvial a nueva tabla 6).
- Redelimitación de Zona de Protección Litoral (ZPL).
- Regulación a los afluentes a cuerpos lacustres.
- Se agrega control de las concentraciones de Cloro Libre Residual (CLR) y Trihalometanos (THM).
- Se explicitan situaciones en las que no aplica esta norma.
- Fiscalización.
- Plazos.

2.2.2. Decreto Supremo N°90 en revisión

El Decreto D.S.90 regula la calidad de los residuos líquidos descargados por las fuentes emisoras a los cuerpos de agua marinos y continentales superficiales de Chile.

IFARLE Ingenieros Civiles Consultores Ltda.

PARLE

En el proyecto de revisión, son identificadas como fuentes emisoras, los establecimientos que descargan residuos líquidos con una carga contaminante media diaria superior a la carga contaminante indicada en la tabla A - Fuente Emisora "Carga Contaminante" - del DS.90, que corresponde a la carga media diaria emitida en aguas servidas por una población de 100 habitantes.

Entonces, la primera etapa del tratador de agua es caracterizar los lodos generados por la planta y ver si entra en el cuadro de una "fuente emisora" como definida en el Decreto.

Tabla N° 2.1: Carga contaminante

Tabla A. Fuente Emisora "Carga Contaminante"

Contaminante	Unidad	Carga contaminante media diaria (equiv. Aguas servidas 100 Hab/dia)
Hidrocarburos totales	g /d	176
Hidrocarburos volátiles	g /d	16
Índice de Fenol	g /d	0,8
Manganeso	g /d	4,8
Mercurio	g /d	0,02
Molibdeno	g /d	1,12
Niquel	g /d	1,6
Nitrógeno total Kjeldahl	g /d	800
Nitrógeno total**	g /d	240
Pentaclorofenol	g /d	0,144
Plomo	g /d	3,2
SAAM	g /d	160
Solonia	1 3 14	0.36
Sólidos suspendidos totales*	g /d	3.520
Suifaco	9 / ú	9.800
Sulfuro	g /d	48
Tetracloroeteno	g /d	0,64
Tolueno	g /d	11,2
Trihalometanos***	g /d	3,2
Xileno	g /d	8
Zinc	g /d	16

La carga de 3.520 g/d (ver tabla precedente) es sobrepasada en los lodos generados por plantas de tratamiento de agua potable y "califica" las plantas de agua potable como fuentes emisoras.

Tabla N° 2.2: Límites máximos permitidos para descargas de aguas residuales

	Límite máximo permitido						
Parámetro	Cuerpos de agua fluviales (Tabla 1)	Cuerpos de agua fluviales (Tabla 2)(considerando máxima capacidad de dilución) (*a)	Cuerpos de agua marinos (Tabla 4) (dentro de la zona de protección litoral)	Cuerpos de agua marinos (Tabla 5) (fuera de la zona de protección litoral)			
Aluminio	5 mg/L	10 mg/L	1 mg/L	10 mg/L			
Arsénico	0,5 mg/L	1 mg/L	0,2 mg/L	0,5 mg/L			
Cloruros	400 mg/L	2000 mg/L	-	-			
Cobre Total	1 mg/L	3 mg/L	1 mg/L	3 mg/L			
Coliformes Fecales	1000 Coli/100ml	1000 Coli/100ml	1000 Coli/100ml (*b)	-			
Cromo VI	0,05 mg/L	0,2 mg/L	0,2 mg/L	0,5 mg/L			
DBO5	35 mgO2/l (*c)	300 mgO2/l	60 mgO2/l	-			
Fluoruro	1,5 mg/L	5 mg/L	1,5 mg/L	6 mg/L			
Fósforo	10 mg/L	15 mg/L	5 mg/L	-			
Hierro Disuelto	5 mg/L	10 mg/L	10 mg/L	30-45 			
Manganeso	0,3 mg/L	3 mg/L	2 mg/L	4 mg/L			
Mercurio	0,001 mg/L	0,01 mg/L	0,005 mg/L	0,02 mg/L			
Nitrógeno Total Kjeldahl	50 mg/L	75 mg/L	50 mg/Lv	-			
рН	6,0 - 8,5	6,0 - 8,5	6,0 - 9,0	5,5- 9,0			
Plomo	0,05 mg/L	0,5	0,2 mg/L	1 mg/L			
Sólidos Suspendidos Totales	80 (*c) mg/L	300 mg/L	100 mg/L	300 mg/L			
Sulfatos	1000 mg/L	2000 mg/L	-	-			
Temperatura	35 °C	40 °C	30 °C				

^{(*}a) Si la concentración calculada con la expresión (3-1) es superior a lo establecido en la Tabla (3-5), entonces en límite será el indicado en dicha Tabla.

Los parámetros que pueden plantear problemas para las aguas residuales de los procesos de tratamiento de agua potable son los siguientes:

- El aluminio para las plantas que utilizan el sulfato de aluminio como coagulante.
- El arsénico en plantas de remoción de arsénico.

IFARLE Ingenieros Civiles Consultores Ltda.

^{(*}b) En áreas aptas para la acuicultura y áreas de manejo y explotación de recursos bentónicos, no se deben sobrepasar los 70 NMP/100 ml.

^{(*}c) Para los residuos líquidos provenientes de plantas de tratamientos de aguas servidas domésticas, no se considerará el contenido de algas.

- El hierro en plantas que abaten hierro y manganeso.
- Los cloruros y sulfatos en solución no son eliminados actualmente en la línea de tratamiento de las plantas. No habiendo dosificación de sulfatos no habría efecto sobre este parámetro en la concentración de la fracción líquida de la descarga de lodos, respecto del valor que trae el Río y que es aceptada por la Norma DS90. En el caso de los cloruros, la dosificación de cloruro férrico resulta en un aumento menor en la concentración de cloruros respecto del valor de este elemento en el Río o de la concentración límite que señala el DS90, aun en el caso de Tabla 1.
- Los sólidos suspendidos totales, que pueden estar presentes en cantidades importantes en las aguas crudas y están concentrados en las cadenas de tratamiento antes de ser purgados.
- Los coliformes fecales en las aguas crudas van a concentrarse en la cadena de tratamiento en las etapas de clarificación y van a sobrepasar el límite de la norma de 1.000 NPM/100 mL.

2.2.3. Plazos

De acuerdo con el anteproyecto de la revisión de la norma de emisión de descargas residuos líquidos a aguas marinas y continentales superficiales, quienes no cumplan con la nueva normativa tendrán los siguientes plazos para ponerse al día (2°Comité Operativo Ampliado, 17 de agosto de 2023):

- 12 meses para caracterizar los residuos líquidos
- 40 meses para cumplir límites normativos

Plazos para fuentes emisoras sujetas al cumplimiento del D.S.N°90, establecimientos que no calificaron como fuente emisoras y que con este nuevo decreto si calificarán, en construcción, artefactos navales, establecimientos que descarguen sólidos mediante la utilización de aguas, como forma de transporte de residuos sólidos.

2.2.4. Situaciones en las que no aplica la norma

De acuerdo con el Artículo 3 del anteproyecto de norma, esta no aplica en los siguientes casos:

- a) Descargas de sistemas de evacuación y drenajes de aguas lluvias, salvo que entren en contacto con residuos líquidos, caso en el que se le aplicará la presente norma a la fuente emisora.
- b) Descargas de vertederos de tormenta de sistemas de recolección y/o tratamiento de aguas servidas, en los eventos en que se incorpore aguas lluvias que excedan su

capacidad máxima de diseño. La Superintendencia de Servicios Sanitarios instruirá a las concesionarias los criterios de uso de estos aliviaderos, resguardando que estos operen únicamente en la situación descrita anteriormente, sin perjuicio de las situaciones de fuerza mayor calificadas por dicha Superintendencia.

- c) Aguas de contacto (CGR-medición y control de volumen y composición).
- d) Descargas de fuentes móviles o difusas (sólo contaminantes medidos en efluente de fuente emisora).

2.3. <u>Descargas a Sistemas de Alcantarillado</u>

El Decreto N°609 establece la cantidad máxima de contaminante permitida para los residuos industriales líquidos, descargados por los establecimientos industriales en los servicios públicos de recolección de aguas servidas de tipo separado o unitario, que cuenten con plantas de tratamiento de aguas servidas.

En la tabla siguiente se presenta los límites para descargas al alcantarillado de aquellos contaminantes asociados a las aguas residuales del tratamiento de agua potable, además de incluir ciertos metales que son considerados en la normativa de descarga a cuerpos de agua superficiales y en normativas internacionales.

Tabla N° 2.3: Decreto N°609 - Límites máximos de los principales contaminantes de interés para descargas al alcantarillado

Parámetro	Límite máximo permitido
Aluminio	10 mg/L (*a)
Arsénico	0,5 mg/L
Cobre	3 mg/L
Cromo Hexavalente	0,5 mg/L
Cromo total	10 mg/L
Manganeso	4 mg/L
Mercurio	0,02 mg/L
рН	5,5-9,0
Plomo	1 mg/L
Sólidos sedimentables	20 mL/L
Sólidos Suspendidos Totales	300 mg/L
Sulfatos	1000 mg/L (*b)
Temperatura	35 °C

IFARLE Ingenieros Civiles Consultores Ltda.

- (*a) Si la concentración media del contaminante presente en la captación de agua del establecimiento industrial fuere mayor a la indicada en la tabla precedente, el límite máximo del contaminante presente en la descarga será igual a la concentración presente en la captación.
- (*b) Se aceptarán concentraciones entre 1000 mg/L y 1500 mg/L cuando se cumplan las siguientes condiciones:
 - pH = 8 -9
 - temperatura del residuo industrial líquido (°C) ≤ temperatura de las aguas receptoras.

2.4. Comparación con norma específica

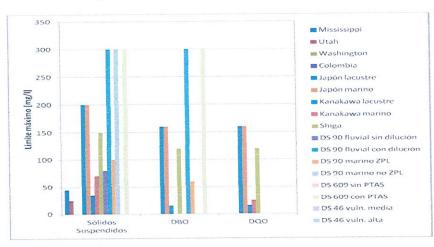
Actualmente, no existe una normativa nacional (EE. UU.) que regule las descargas de aguas residuales del tratamiento de agua potable a cuerpos de agua superficiales. Por lo tanto, las descargas de las plantas de agua potable son autorizadas a nivel estatal mediante un sistema de permisos. El programa de permisos NPDES (National Pollutant Discharge Elimination System) regula las descargas directas de aguas residuales del tratamiento de agua potable a cuerpos de agua superficiales. Los permisos son emitidos por las oficinas regionales de la EPA o por los estados autorizados.

Las plantas de tratamiento de agua potable pueden descargar sus aguas residuales mediante un permiso de tipo general o individual. Los permisos generales se emiten para múltiples plantas de agua potable cuyas aguas residuales cuentan con características similares, mientras que los permisos individuales se emiten para regular las descargas de aguas residuales de una determinada planta.

Para ambos tipos de permisos los estados fijan los límites de los parámetros en base a dos criterios, tecnología y objetivos de calidad del agua. El criterio de tecnología se basa en el mejor de los procesos de tratamiento para la remoción de contaminantes específicos. El criterio de calidad del agua corresponde a los objetivos de calidad para cuerpos de agua superficiales propios de cada estado.

A continuación se compara uno de estos permisos con la normativa chilena.

Tabla N° 2.4 Comparación Normativa de Mississippi y Chilena


	Normativa Mississippi			ssippi	Normativa Chilena			
Parámetro	Unidad	Drinking Water Treatment Plant General Permit			DS 90 (Descargas a cuerpos de agua superficial)		DS 609 (Descargas a alcantarillado)	
1 diametro		Mínimo	Prome- dio	Máximo	Agua Fluvial	Agua Fluvial con Dilución	Alcan- tarillado sin PTAP	Alcan- tarillado con PTAP
Solidos Suspendidos	mg/L		30	45	80	300		300
На		6		9	6-8,5	6-8,5	5,5-9	5,5-9
Aluminio	mg/L				5	10	10	10
Hierro	mg/L			1	5	10		
Manganeso	mg/L				0,3	3	4	4
N Kjeldahl	mg/L				50	75		
DBO	mg/L					300		300
Cloro Residual*	mg/L		0,011	0,019				

^{*} Sólo si la cloración es usada en las instalaciones y si es utilizada en procesos previos a unidades de tratamiento que produzcan residuos.

N Total: N Kjedahl + nitritos + nitratos

Además, en la figura siguiente se compara permisos de Estados Unidos y Japón con la normativa chilena para los parámetros Sólidos Suspendidos, DBO y DQO.

Figura N° 2.1: Normativas agua residual

The state of the s

3. <u>PROCESOS DE POTABILIZACIÓN Y TRATAMIENTO DE AGUAS RESIDUALES EN PLANTAS DE TRATAMIENTO DE AGUA POTABLE</u>

3.1. Procesos de potabilización en función de la calidad del agua cruda

La Res. SISS N°4426-2016 de "Calidad de fuentes de agua potable":

- Establece una clasificación de las fuentes que se usan para producir agua potable en función de los diferentes procesos de tratamiento recomendados, y el control de la calidad de las fuentes de agua potable.
- Se aplica al agua cruda en el punto de captación, a fuentes en explotación y futuras, subterráneas y superficiales.
- Es referencial respecto a la clasificación de las fuentes y obligatorio respecto a su control y tratamiento de fuentes superficiales y subterráneas.
- Establece los siguientes tratamientos obligatorios:
 - > Desinfección, que es obligatorio para todos los tipos de fuentes.
 - > Filtración, que es obligatoria para fuentes superficiales y subterráneas <15m.

A continuación se adjunta la clasificación de fuentes.

Tabla N° 3.1: Res. SISS N°4426-2016. Clasificación fuentes

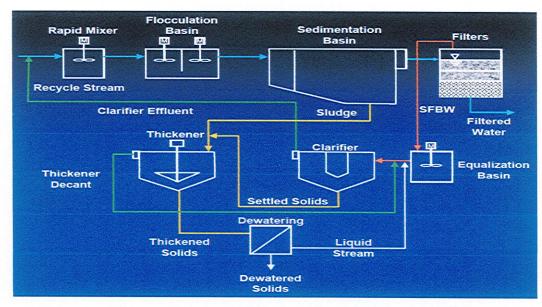
Tipo	Características				
TIPO I	Fuentes subterráneas cuyas aguas son factibles de potabilizar sólo con el proceso de desinfección.				
TIPO II	Las fuentes subterráneas que por su turbiedad o sus características requieren ser tratadas con procesos de filtración directa en lecho granular.				
	Las fuentes superficiales que requieren ser tratadas con un proceso de filtración directa en lecho granular.				
TIPO III	Aguas factibles de potabilizar con los procesos de coagulación, floculación, decantación y filtración.				
	Aguas factibles de potabilizar con un proceso complementario de oxidación.				
	Aguas factibles de potabilizar con un proceso complementario de adsorción (ej. adsorción con carbón activado para tratar problemas de olor y sabor).				
	Aguas factibles de potabilizar con un proceso complementario de regulación de pH.				
	Aguas factibles de potabilizar mediante procesos combinados de los antes mencionados (ej. remoción de color verdadero).				

IFARLE Ingenieros Civiles Consultores Ltda.

Tipo	Características
TIPO IV	Aguas Tipo III con altas turbiedades (>500UNT) pueden requerir procesos de presedimentación, con o sin precoagulación.
TIPO V	Fuentes en que los procesos anteriores no son suficientes para su potabilización y deben aplicar, adicional o independientemente, procesos especiales.
	Casos sustancias disueltas, por ej. cloruros o sulfatos, estos procesos especiales pueden ser osmosis inversa, intercambio iónico, electrodiálisis, ultrafiltración, nanofiltración u otro equivalente.
	Casos parámetros excedidos son demanda de cloro, elementos o sustancias orgánicas, o plaguicidas, los procesos especiales pueden ser oxidación, cloración sobre punto de quiebre, ultrafiltración, ozonización, precipitación química u otro equivalente.

De acuerdo a lo anterior los procesos de potabilización en función de la calidad del agua cruda son:

Tabla N° 3.2: Procesos de potabilización en función de la calidad del agua cruda


TURBIEDAD	< 2UNT	BAJA	MEDIA	ALTA	
PROCESO/TIPO FUENTE	TIPO I	TIPO II	TIPO III	TIPO IV	TIPO V
Desarenación			X	X	
Precoagulación				X	
Presedimentación				Х	
Oxidación (precloración)			Х		
Coagulación		X	Х	Х	
Floculación			Х	Х	
Sedimentación			Х	Х	
Filtración		X	Х	Х	
Procesos de membranas					X
Otros procesos					×
Desinfección (cloración)	×	X	Х	X	X

De la tabla precedente se tiene que para las fuentes tipo II a tipo IV se requiere de procesos físico-químicos, que también se conocen como tratamiento convencional. Estos procesos generan, además de la potabilización del agua, aguas residuales como se observa en la figura siguiente:

IFARLE Ingenieros Civiles Consultores Ltda.

Figura N° 3.1: Procesos tratamiento convencional para aguas tipo III y tratamiento de aguas residuales

La figura anterior también muestra una de las alternativas de tratamiento de aguas residuales, que incluye la ecualización, sedimentación, espesamiento y deshidratación como tratamiento de las aguas residuales, incluyendo la recirculación de los sobrenadantes.

3.2. Caracterización de las aguas residuales

La composición y cantidad de residuos que se originan a través de los procesos de tratamiento del agua potable son variables. Debido a los cambios en la calidad del agua cruda y en las operaciones de tratamiento, las aguas residuales que se obtengan tendrán diferentes características y cantidades para distintos periodos en una misma planta de tratamiento o entre una planta y otra. En la tabla siguiente se muestra los principales tipos de residuos presentes en el agua cruda.

Tabla N° 3.3: Residuos presentes en el agua cruda (Fuente: AWWA, 2002)

Arcillas constituyentes de turbiedad

Compuestos no minerales introducidos por hojas y plancton

IFARLE Ingenieros Civiles Consultores Ltda.

Parte del tratamiento del agua potable corresponde a la adición de una serie de productos químicos para la remoción de los contaminantes. Estos residuos quedan retenidos en las distintas unidades que conforman el tratamiento, los cuales en conjunto a las sustancias químicas agregadas y a ciertos elementos propios de la unidad (p. ej. arena, antracita, etc.), pasan a ser los componentes de las aguas residuales de los procesos de tratamiento.

En la tabla siguiente se presenta los principales residuos componentes de las aguas residuales.

Tabla N° 3.4: Residuos agregados durante el tratamiento (Fuente: AWWA, 2002)

Residuos agregados durante el tratamiento
lidróxido de aluminio
lidróxido de hierro
Hidróxido de calcio
Sulfato de aluminio
Polielectrolitos
Carbón activo gastado o rechazo de los sistemas de carbón
Residuos de filtración lentes de arena
Residuos de plantas de remoción de hierro manganeso
Medios filtrantes

El análisis de las aguas residuales pone de manifiesto la presencia de muchos compuestos que componen la corteza terrestre, variando las concentraciones según la naturaleza del terreno atravesado por el agua cruda.

Para la caracterización de las aguas residuales son fundamentales los siguientes aspectos:

- El tipo de agua residual.
- Las características que pueden influir en su deshidratado.
- Las cantidades de sólidos producidos.

Las aguas residuales procedentes de plantas de tratamiento de agua potable se pueden clasificar en cinco categorías:

- Aguas residuales de presedimentación.
- Aguas residuales de coagulación, floculación y sedimentación.
- Aguas residuales de lavado de filtros.
- Aguas residuales de ablandamiento.

IFARLE Ingenieros Civiles Consultores Ltda.

Aguas residuales de osmosis inversa.

De estas categorías cabe destacar a las aguas residuales de presedimentación, coagulación y lavado de filtros, que corresponden a los principales residuos que se producen en las plantas de tratamiento de agua potable del país.

Cuando el parámetro crítico es la turbiedad es en los procesos de presedimentación y sedimentación donde se abate la mayor parte de los sólidos. En efecto, en cada uno de ellos se puede lograr eficiencias de remoción del orden de 90% como se ha determinado tanto en plantas de tratamiento en Chile como del extranjero. Luego, el volumen de las aguas residuales de coagulación depende de la cantidad de sólidos suspendidos en la fuente de agua cruda, de la producción de agua potable de la PTAP y de la dosis de coagulante usada.

Los lodos originados en las plantas de tratamiento, pueden considerarse como lodos poco concentrados. Los procedentes de las purgas de sedimentadores (aguas residuales de coagulación) pueden contener una concentración de sólidos de 0,5% a 2% (5 a 20 gr/L). Este valor es orientativo, ya que depende de varios factores, como son en primer lugar las características del agua bruta (turbiedad, color, materia orgánica, metales como hierro y manganeso, etc.), dosis de coagulante y otros reactivos empleados, características y tipo de sedimentadores y ritmo de purgas.

Se debe considerar que muchas obras de presedimentación y ciertas obras de sedimentación funcionan en forma discontinua, sin extracción de lodo a medida que se va generando, por lo cual se va concentrando en la obra, llegando a valores de mayor concentración.

Los procedentes del agua de lavado de filtros son menos concentrados aún, del orden de 0,04 a 0,08% (0,4 a 0,8 gr/L).

3.3. Procesos tratamiento de aguas residuales

3.3.1. Generalidades

De acuerdo a la caracterización de las aguas residuales provenientes del tratamiento convencional de agua potable para cumplir con lo establecido en el DS90 existen 2 alternativas generales:

 Cotratamiento: consiste en verter las aguas residuales al alcantarillado para su posterior tratamiento en las PTAS. Se recomienda para PTAP pequeñas.

IFARLE Ingenieros Civiles Consultores Ltda.

FASLE

Tratamiento de aguas residuales: consiste en tratar las aguas residuales con un grado adecuado de humedad para su disposición o aprovechamiento. Se recomienda para PTAP medianas y grandes.

Figura N° 3.2: Tratamiento de Aguas Residuales

La infraestructura de tratamiento de aguas residuales (PTAR) depende del caudal y concentración de lodos del agua residual. Estas variables son a su vez función de la turbiedad del agua cruda (que define las etapas de tratamiento) y del caudal de la PTAP.

Figura N° 3.3: Procesos tratamiento lodos

IFARLE Ingenieros Civiles Consultores Ltda.

3.3.2. Recirculación de aguas residuales

El volumen de las aguas residuales de coagulación y lavado de filtros representan alrededor de un 5% del agua tratada en la planta, por lo que en varios países desarrollados se ha convertido en una práctica normal el proceso de recirculación de estas aguas a cabecera de tratamiento. Esto es especialmente relevante en periodos de escasez hídrica.

Los potenciales flujos de aguas residuales a ser recirculados son:

Tabla N° 3.5: Potenciales flujos de aguas residuales a recircular

Planta	Proceso	Descripción		
PTAP	Filtración	Aguas residuales de lavado de filtros		
PTAR	Espesado	Sobrenadante de unidad de espesado.		
	Deshidratación	Fase líquida de proceso de filtración (filtros prensa, filtros prensa banda).		
	Deshidratación	Fase líquida de proceso de centrifugación		

3.4. Calidad de Lodos Generados

En la tabla siguiente se indica la calidad de los lodos generados en distintas PTAP. Los valores indicados para la PTAP La Florida de Aguas Andinas corresponden a un monitoreo de la descarga realizado en el año 2013, mientras que los lodos indicados para las PTAP de Essbio y Nuevosur corresponden al retrolavado de los filtros. Los valores se comparan con los límites establecidos por el DS90 y por el Decreto 609. Se destacan en amarillo los parámetros que superan tanto el DS90 y Decreto 609, y en naranja los parámetros que superan el DS90 pero respetan el Decreto 609.

Los parámetros que exceden el DS90 los sólidos suspendidos totales, hierro, manganeso y aluminio.

Tabla N° 3.6: Calidad de Lodos Generados

	Visit in the last			2013	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	24-10-22
Parámetro	Unidad	DS 90	D 609	Aguas Andinas	Essbio - Nuevosur						
				La Florida	Cabrero	Coelemu	La Mochita	Nogales	Monte Aguila	Peralillo	Rancagua
Aceites y Grasas	mg/L	20		<1	<14	<1	<14	<14	<14	<14	3
Aluminio Total	mg/L	5	10	9,619	0,1	0,87	0,13	0,1	<0,09	<0,09	1,52
Arsénico Total	mg/L	0,5	0,5	0,083	0,02	0,062	0,008	0,004	0,011	0,006	0,019
Benceno	mg/L	0,7		<0,0028		<0,005					
Boro Total	mg/L	0,75		0,37	0,21	0,09	0,14	0,59	0,07	0,05	0,2
Bromodiclorometano	mg/L			<0,00073							
Bromoformo	mg/L			<0,00060							
Cadmio Total	mg/L	0,01		0,003	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,002
Cianuro	mg/L	0,2		<0,018	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	0,01
Cloruro	mg/L	<400		266	21,44	21,44	12,06	37,12	13,74		
Cobre Total	mg/L	1,0	3	0,032	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,03
Coliformes fecales	Coli/100mL	1000		640	<2,0		<2,0		<2,0		0
Cromo hexavalente	mg/L	0,05		<0,02	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,02
Cromo Total	mg/L				0,07		<0,05		0,08	<0,05	
Demanda Bioquímica de Oxígeno	mg/L	35		4	21,03		11,15	12,13	28,83	11,2	8,43
Demanda Química de Oxígeno	mg/L			<6	47		33	28	57	17	10
Dibromoclorometano	mg/L			<0,00046							
Estaño	mg/L				<0,1		<0,03		<0,1		
Fluor	mg/L					(0,1
Fluoruro	mg/L	1,5		0,216	<0,5	<0,2	<0,2	<0,2	<0,5		
Fósforo	mg/L	10		1	10,03		1,1	0,93	8,23	<0,50	0,5
Hidrocarburos Fijos	mg/L	10		<1	<5		<5	<5	<5	<5	5
Hidrocarburos Totales	mg/L			<1	<5		<5		<5	<5	
Hidrocarburos Volátiles	mg/L			<0,2	<0,2		<0,2		<0,2	<0,2	

				2013	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	24-10-22
Parámetro	Unidad	DS 90	D 609	Aguas Andinas	Essbio - Nuevosur						
				La Florida	Cabrero	Coelemu	La Mochita	Nogales	Monte Aguila	Peralillo	Rancagua
Hierro disuelto	mg/L	5		<0,03				0,36			0,08
Hierro Total	mg/L				72,25	16,1	2,69		11,52		
Índice de Fenol	mg/L	0,50		<0,006	<0,01		<0,01	<0,01	<0,01		0,0005
m+p-Xileno	mg/L			<0,005			The street of th				
Manganeso total	mg/L	0,3	4	0,782	7,35	2,38	0,15	<0,02	0,07	<0,02	0,1
Mercurio total	mg/L	0,001		<0,0003	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	<0,0005	0,005
Molibdeno Total	mg/L	1,0		<0,01	<0,02	<0,02	<0,02	<0,02	<0,02		0,005
Níquel Total	mg/L	0,2		<0,012	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,02
Nitratos	mg/L				1,76	8,51	0,97	1,26	0,97		
Nitritos	mg/L				0,14	0,12	<0,02	0,03	0,11		
Nitrógeno Amoniacal	mg/L									3,61	
Nitrógeno Total Kjeldhal	mg/L	50	80	2,12	1,3	0,9	0,5	1,21	0,9		1,6
N-Nitrito+N-Nitrato	mg/L				<0,5	2	0,5		<0,5		
o-Xileno	mg/L			<0,0025			0,5				
Pentaclorofenol	mg/L	0,009		<0,0021	<0,005	<0,005	0,5	<0,005	<0,005		0,004
рН		6,0 - 8,5		7,7	7,06	7,09	0,5	7,45	7,24	7,28	7,21
Plomo total	mg/L	0,1		<0,012	<0,03	<0,03	0,5	<0,03	<0,03	<0,03	0,01
Poder Espumógeno	mg/L	7		<0,8	<2,00		0,5	<2,00	<2,00	<2,00	2
Selenio total	mg/L	0,01		<0,009	<0,001	<0,001	0,5	<0,001	<0,001		0,001
Sólidos Sedimentables	mg/L				34		23		<0,50	<0,50	
Sólidos Suspendidos Totales	mg/L	80	300	539	49,6		157,6	<5,0	206,4	<5,0	25,1
Sulfatos	mg/L	1000	1000	283	139,1	112,8	47,3	85,2	35,3	64	98,4
Sulfuros	mg/L	1		<0,03	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	0,1
Surfactantes Aniónicos	mg/L				<0,1		<0,1	<0,1	<0,1		
Temperatura	°C				16,4	20,6	13,7	19,3	15,2	20,4	
Tetracloroeteno	mg/L	0,04		<0,0005	<0,005	<0,005	<0,005	<0,005	<0,005		0,005

				2013	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	01-09-21	24-10-22	
Parámetro	Unidad	DS 90	D 609	Aguas Andinas La Florida	Essbio - Nuevosur							
					Cabrero	Coelemu	La Mochita	Nogales	Monte Aguila	Peralillo	Rancagua	
Tolueno	mg/L	0,7		<0,0025	<0,005	<0,005	<0,005	<0,005	<0,005		0,004	
Triclorometano	mg/L	0,2		<0,00059	<0,005	<0,005	0,008	<0,005	800,0		0,005	
Xilenos Totales	mg/L	0,5		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		0,004	
Zinc Total	mg/L	3		0,094	0,11	0,05	0,07	<0,02	<0,02	<0,02	0,04	

Fuente: Empresas Aguas Andinas, Essbio y Nuevosur.

4. <u>SOLUCIONES DE TRATAMIENTO DE LAS AGUAS RESIDUALES DE PLANTAS DE TRATAMIENTO DE AGUA POTABLE PROPUESTOS POR EMPRESAS SANITARIAS</u>

4.1. Generalidades

En la tabla siguiente se resumen las alternativas propuestas por distintas empresas sanitarias para cumplir con el DS90.

Tabla N° 4.1: Soluciones propuestas por empresas sanitarias

Solución	Proceso	Aguas Andinas	Nueva Atacama	Essbio - Nuevosur	ESVAL - Aguas del Valle
Cotratamiento	Descarga a alcantarillado AS			X	
	Ecualización	X		X	X
	Sedimentación (Clarificación)	×		X	×
Tratamiento	Espesamiento	X		X	
	Deshidratación	X		X	X
	Evaporación		Х		
	Descarga al mar		Х		

A continuación, se detallan y analizan las alternativas planteadas por cada empresa.

4.2. Aguas Andinas

La solución planteada por Aguas Andinas, para el Complejo Vizcachas, proviene principalmente del Informe de Hidrosan (2023). Se plantean 2 alternativas:

- Tratamiento de aguas residuales y deshidratación mediante centrifugado.
- Tratamiento de aguas residuales y deshidratación mediante canchas de secado.

Ambas alternativas consideran un monorelleno para la disposición final de los lodos.

A continuación, se resume el área requerida, inversión y costos de operación y mantenimiento de cada alternativa y el monorrelleno.

Tabla N° 4.2: Soluciones propuestas por Aguas Andinas

PTAP	Caudal	Qlodos	THE RESERVE OF THE PARTY OF THE	Área Requerida	Inversión	O&M	
	L/s L/s		Propuesta	Ha	(UF)	MM CLP/año	
Complejo Vizcachas	15.500	842	Centrifugado	9	10.641.395	64.105	
Complejo Vizcachas	15.500	842	Canchas de Secado	151	8.641.878	29.550	
Complejo Vizcachas	15.500	842	Monorelleno		9.500.000		

Estos valores fueron calculados por Aguas Andinas para el evento de turbiedad máxima en el río Maipo (10.000 – 15.000 UNT).

4.3. Nueva Atacama

Aguas Nuevas propone soluciones para 3 de sus plantas de tratamiento. El principal problema de estas plantas es el rechazo producido en las plantas de osmosis inversa. Proponen dos tipos de solución:

- Piscinas de evaporación
- Descarga en emisario submarino

Para las piscinas de evaporación se toma como parámetro de diseño la evaporación diaria de la estación Tierra Amarilla – Tranque Lautaro, con una probabilidad de excedencia de 75%.

Para la descarga en emisario submarino, se considera una conducción de 68KM.

A continuación, se resumen las soluciones propuestas por Nueva Atacama.

Tabla N° 4.3: Soluciones propuestas por Nueva Atacama

PTAP	Caudal	Qlodos	Solución Propuesta	Área Requerida	Inversión
	L/s	L/s		Ha	(UF)
Diego de Almagro	47	12	Piscina de evaporación	23	113.131
Inca de Oro	4	1	Piscina de evaporación	2,4	19.660
Placilla Sierralta	342	86	Descarga en emisario submarino	_	2.002.935
Cancha Rayada	228	57	Descarga en emisario submarino		2.002.933

Figura N° 4.1: Soluciones propuestas por Nueva Atacama

4.4. Essbio - Nuevosur

4.4.1. Introducción

Essbio y Nuevosur proponen como solución para todas sus PTAP el deshidratado mediante centrífugas. De las 95 PTAP consideradas en su NBI, calculan la inversión requerida para 59 de ellas, 48 de Essbio y 11 de Nuevosur.

Tabla N° 4.4: Soluciones propuestas por Essbio - Nuevosur

Empresa	Localidad	PTAP	Caudal	Qlodos	Área Requerida	Inversión	O&M	
			L/s	L/s	Ha	(UF)	MM CLP/año	
Essbio	Bulnes	Bulnes	48	56,5	0,03	23.656	17	
Essbio	Chillan	Chillan	500	293,0	0	38.219	40	
Essbio	Cobquecura	Planta Cobquecura	9	14,1	0,03	20.773	12	
Essbio	Coelemu	Coelemu	30	76,2	0,03	30.332	29	
Essbio	Quillón	Quillón 1	45	56,5	0,03	23.656	16	
Essbio	Quillón	Quillón 2 (Rio Itata)	100	56,5	0	29.513	23	
Essbio	Quirihue	Planta El Llano	30	46,1	0,03	24.300	19	
Essbio	Santa Clara	Planta Santa Clara	15	27,7	0	18.610	12	
Essbio	Arauco	Planta Punteras Los Cuervos	75	35,6	0	32.657	38	
Essbio	Arauco	Ramadillas	34	58,3	0	22.774	18	
Essbio	Cabrero	Planta Cabrero	75,9	56,5	0	25.902	20	
Essbio	Cañete	Cañete	22	58,8	0,03	25.874	23	
Essbio	Chiguayante	Chiguayante (Punteras)		56,5	0,03	44.050	59	
Essbio	Concepción	Landa	185	177,5	0,03	36.617	30	

IFARLE Ingenieros Civiles Consultores Ltda.

Empresa	Localidad	PTAP	Caudal	Qlodos	Área Requerida	Inversión	O&M
			L/s	L/s	Ha	(UF)	MM CLP/año
Essbio	Concepción	La Mochita	3000	720,0	0	82.071	208
Essbio	Contulmo	Contulmo	20	63,5	0	25.250	26
Essbio	Coronel	Pesqueras		75,2	0	-	88
Essbio	Coronel	La Peña	220	264,0	0	44.381	-
Essbio	Curanilahue	Curanilahue	120	98,9	0	43.914	56
Essbio	Dichato	Dichato	25	64,0	0,03	26.526	24
Essbio	Florida	Nueva PTAP Florida	18	56,5	0	20.885	13
Essbio	Hualqui	Hualqui	20	48,0	0	18.610	15
Essbio	Hualqui	Punteras Hualqui	45	77,0	0	20.885	18
Essbio	Laja	San Rosendo	18,6	20,2	0	20.149	14
Essbio	Laja	Punteras Laja	70	77,0	0	26.956	30
Essbio	Lebu	Lebu	80	40,0	0	25.250	25
ESSDIO	Los Alamos -	Lebu	00	40,0	0	25.250	25
Essbio	Cerro Alto - Tres Pinos	Pilpilco	100	88,3	0	40.131	37
Essbio	Los Ángeles	Gabriela Mistral	40	141,0	0,03	24.300	20
Essbio	Lota	El Bollo	85	45,8	0,03	30.137	29
Essbio	Lota	El Roble	110	39,3	0,03	30.137	29
Essbio	Lota	Colcura	50	39,3	0	29.513	30
Essbio	Monte Águila	Planta Monte Águila	19,8	39,3	0	20.885	15
Essbio	Mulchen	Mulchen	100	56,5	0	28.493	26
Essbio	Nacimiento	Prieto	98	56,5	0	25.902	24
Essbio	Rafael	Rafael	10	20,4	0	20.149	14
Essbio	San Pedro De La Paz	San Pedro De La Paz	10	56,5	0,03	44.050	59
Essbio	Santa Barbara	Santa Barbara (Pozo Hincado)		20,2	0	22.774	18
Essbio	Tome	Punta De Parra	9	22,9	0,03	19.234	13
Essbio	Tome	Tome	240	96,0	0	35.993	28
Essbio	Yumbel	Rio Claro	30	70,5	0	23.676	18
Essbio	Yumbel	Estación	18	56,5	0	20.885	13
Essbio	Yumbel	Rio Claro 2 (Punteras)		14,1	0	18.610	12
Essbio	Boca De Rapel - Navidad	Licancheu	30	56,5	0	25.250	16
Essbio	Chépica	Chépica 2 (Noria)		27,2	0	22.774	18
Essbio	Codegua - La Punta	Estancilla 1	20	56,5	0	25.250	21
Essbio	Doñihue	Doñihue	pennella - com	56,8	0	28.493	20
Essbio	Pichilemu	Compacta Pulsapack	80	0,0	0	-	-
Essbio	Pichilemu	Filtros En Presión		47,1	0	37.701	35
Essbio	Puente Negro	Puente Negro	21	39,3	0,03	20.773	15
Essbio	Rancagua - Machalí	Nogales - Filtros Rapidos	1000	199,5	0	43.426	67
Nuevosur	Chanco	Chanco	20	39,3	0,01	21.093	16
Nuevosur	Constitución	Caracoles	100	27,7	0	32.657	37
Nuevosur	Constitución	Piedra De Lobos	100	56,5	0	16.717	32
Nuevosur		Curepto	23	20,4	0	22.774	13
Nuevosur		Los Molinos	9	18,6	0,01	21.093	14
Nuevosur	Gualleco	Planta Gualleco	4	9,0	0,01	18.818	11
Nuevosur	lloca	Planta Tratamiento	15,2	27,7	0,01	20.149	13
Nuevosur	Licantén	Licantén	28	27,7	0,01	20.143	13
Nuevosur	Pelluhue	El Manzano	62,5	93,1	0,01	28.701	21
					0,01		
Nuevosur		Putu	8	20,4		20.149	13
Nuevosur	Talca	Surponiente	130	64,3	0,01	29.721	50

En la figura siguiente se grafican los costos de inversión y O&M para las PTAP de Essbio y Nuevosur. Se omite la PTAP La Mochita ya que el caudal es de otro orden de magnitud. A partir de los datos entregados por la empresa, se podrían estimar los costos de inversión y O&M para el cumplimiento del DS90 para PTAP hasta 1000L/s.

Essbio - Nuevosur
SIN PTAP La Mochita

50.000
40.000
30.000
20.000
10.000

Y = 5,8889x^{0,3442}
R² = 0,6861

0 200 400 600 800 1000 1200
Caudal Tratado PTAP (L/s)

Figura N° 4.2: Soluciones propuestas por Essbio - Nuevosur

4.4.2. Caso PTAP Piedra de Lobos

A continuación, se estudia el caso particular de la PTAP Piedra de Lobos, en la localidad de Constitución. Todas las PTAP de Essbio y Nuevosur siguen la misma metodología.

Figura Nº 4.3: PTAP Piedra de Lobos - Constitución

Tabla N° 4.5: Dimensionamiento PTAP Piedra de Lobos - Constitución

Parámetro	Unidad	Valor
Localidad		Constitución
Nombre PTAP		Piedra de Lobos
Caudal Tratado	L/s	100
Caudal Lodos (retrolavado)	L/s	56,5
N° Filtros	N°	3
Volumen Retrolavado	m3/día	152,68
Volumen requerido estanque	m3	152,7
Volumen a Deshidratar	m3/día	12,7
Volumen a Deshidratar	m3/h	2,1
Volumen Deshidratado	m3/día	0,4
Equipo deshidratado		Aldec 20

La tabla siguiente detalla el cálculo del OPEX de la PTAP Piedra de Lobos.

Tabla Nº 4.6: OPEX PTAP Piedra de Lobos - Constitución

OPEX		
Parámetro	Unidad	Valor
Localidad		Constitución
Nombre PTAP		Piedra de Lobos
Volumen Deshidratado	m3/mes	11,5
Sólido Seco	ton/año	28
Consumo polímero	kg/año	279
Volumen contenedores	m3	5
N° viajes al año	N°	36
Valor Viaje	UF/Viaje	11,48
Costo de Disposición	UF/ton	0,9
Arriendo mensual	UF	0,97
Costo polimero	MM\$/año	0,9
Costo transporte	MM\$/año	14,9
Costo disposición	MM\$/año	4,5
Costo arriendo contenedores	MM\$/año	0,4
Costo total transporte y disposición de lodos	MM\$/año	19,9
Potencia Centrífuga	KW	17
Costo Electricidad	MM\$/año	4,8
Mantenimiento anual	MM\$/año	6,6
TOTAL	MM\$/año	32,2

La tabla siguiente detalla el cálculo del CAPEX de la PTAP Piedra de Lobos.

IFARLE Ingenieros Civiles Consultores Ltda.

FARLE

Tabla N° 4.7: CAPEX PTAP Piedra de Lobos - Constitución

ITEM	DESCRIPCIÓN	Unidad	Cantidad	PU	TOTAL	TOTAL
I I EIVI	DESCRIPCION	Unidad	Cantidad	\$	\$	UF
1	Estanque Ecualizador	N°	0	1/=	-	-
2	Espesador	N°	0	-	-	-
3	Centrifuga	N°	1	99.013.590	99.013.590	2.739
4	Montaje Equipos	GL	1	20.792.854	20.792.854	575
5	Galpón	m2	100	831.450	83.145.000	2.300
6	Obras Eléctricas	GL	1	27.023.842	27.023.842	748
7	Obras Hidráulicas	GL	1	30.121.190	30.121.190	833
8	Costos de Terreno	m2	0	72.300	-	-
	Costos de Ingeniería				60.000.000	1.660
	Costos de ITO 4%				10.403.859	288
	Costos de DIA 10%				162.675.000	4.500
	Costos GG y Utilidades 69%				111.147.191	3.075
	TOTAL				604.322.526	16.717

4.4.3. Caso PTAP La Mochita

A continuación, se estudia el caso particular de la PTAP La Mochita, en la localidad de Concepción. Todas las PTAP de Essbio la misma metodología.

Figura N° 4.4: PTAP La Mochita – Concepción

ACCOUNTS OF THE PARTY OF T

Tabla N° 4.8: Dimensionamiento PTAP La Mochita - Concepción

Parámetro	Unidad	Valor
Localidad		Concepción
Nombre PTAP		La Mochita
Caudal Tratado	L/s	3.000
Caudal Lodos (retrolavado)	L/s	720
N° Filtros	N°	20
Volumen Retrolavado	m3/día	3.888
Volumen requerido estanque	m3	3.888
Volumen a Deshidratar	m3/día	324
Volumen a Deshidratar	m3/h	27
Volumen Deshidratado	m3/día	9,7
Equipo deshidratado		Aldec 30
Equipo espesamiento		Aldrum maxi

La tabla siguiente detalla el cálculo del OPEX de la PTAP La Mochita.

Tabla N° 4.9: OPEX PTAP La Mochita - Concepción

OPEX					
Parámetro	Unidad	Valor			
Localidad		Concepción			
Nombre PTAP		La Mochita			
Volumen Deshidratado	m3/mes	291,6			
Sólido Seco	ton/año	710			
Consumo polímero	kg/año	7096			
Volumen contenedores	m3	15			
N° viajes al año	N°	240			
Valor Viaje	UF/Viaje	5,98			
Costo de Disposición	UF/ton	0,85			
Arriendo mensual	UF	0,8			
Costo polimero	MM\$/año	23,4			
Costo transporte	MM\$/año	51,8			
Costo disposición	MM\$/año	108,9			
Costo arriendo contenedores	MM\$/año	0,3			
Costo total transporte y disposición de lodos	MM\$/año	161,0			
Potencia Centrífuga	KW	19			
Potencia Espesador	KW	6			
Costo Electricidad	MM\$/año	7,1			
Mantenimiento anual	MM\$/año	16,5			
TOTAL	MM\$/año	208			

IFARLE Ingenieros Civiles Consultores Ltda.

La tabla siguiente detalla el cálculo del CAPEX de la PTAP La Mochita. Essbio no detalla el costo de cada componente, solo indica la inversión total, por lo que se intenta reconstruir el presupuesto a partir de la metodología utilizada en las otras PTAP de Essbio. El único valor sin respaldo, es el del estanque ecualizador, ya que Essbio tiene precios para estanques hasta 300m³, y se estima que en la PTAP La Mochita se requerirá un estanque de casi 4000m³.

Tabla N° 4.10: Reconstitución CAPEX PTAP La Mochita - Concepción

ITEM	DESCRIPCIÓN	Unidad	Cantidad	PU	TOTAL	TOTAL
				\$	\$	UF
1	Estanque Ecualizador	N°	1	626.093.120	626.093.120	17.319
2	Espesador	N°	1	82.511.325	82.511.325	2.282
3	Centrifuga	N°	1	102.821.805	102.821.805	2.844
4	Montaje Equipos	GL	1	38.919.957	38.919.957	1.077
5	Galpón	m2	150	831.450	124.717.500	3.450
6	Obras Eléctricas	GL	1	341.345.739	341.345.739	9.442
7	Obras Hidráulicas	GL	1	380.469.212	380.469.212	10.525
8	Costos de Terreno	m2	300	72.300	21.690.000	600
	Costos de Ingeniería				60.000.000	1.660
	Costos de ITO 4%				89.668.252	2.480
	Costos de DIA 10%				162.675.000	4.500
	Costos GG y Utilidades 46%				935.954.262	25.891
	TOTAL				2.966.866.172	82.071

4.5. Esval – Aguas del Valle

4.5.1. Introducción

Esval y Aguas del Valle proponen como solución para todas sus PTAP el deshidratado mediante centrífugas. Se calcula la inversión, área requerida y gastos de operación y mantenimiento en 3 PTAP de Aguas del Valle y 14 PTAP de Esval. La PTAP San Juan de Esval considera además tratamiento al rechazo de la PTOI (en proyecto).

Tabla N° 4.11: Soluciones propuestas por Aguas del Valle

Empresa	PTAP	Caudal L/s	Qlodos L/s	Solución Propuesta	Área Requerida	Inversión	O&M
					Ha	(UF)	MM CLP/año
Aguas del Valle	Las Rojas	750	518,75		0,06	82.776	747
Aguas del Valle	Los Peñones	370	62,80	Centrifugado	0,06	58.002	261
Aguas del Valle	Sotaqui	23,3	43,60		0,02	30.065	72

IFARLE Ingenieros Civiles Consultores Ltda.

Tabla N° 4.12: Soluciones propuestas por ESVAL

Empresa	PTAP	Caudal L/s	Qlodos L/s	Solución Propuesta	Área Requerida	Inversión	O&M
					На	(UF)	MM CLP/año
ESVAL	Concón (P1, P2 Y P3)	1908	1085		0,36	272.446	2.293
ESVAL	Las Vegas	1500	300		0,24	179.650	1.148
ESVAL	El Sauce	330	62,8		0,06	61.920	220
ESVAL	La Cruz	80	250		0,03	53.107	220
ESVAL	Puteando El Llano	18	105,8		0,02	36.923	91
ESVAL	Tranque Papudo	47	78,5		0,02	36.923	95
ESVAL	San Jerónimo	30	43,6	Centrifugado	0,02	32.906	80
ESVAL	Poza Azul	60	62,8		0,02	33.098	77
ESVAL	Dren Lenox	15	30,8		0,02	32.715	68
ESVAL	Parrones	52	150		0,02	33.671	80
ESVAL	Quinquimo 2	6	10		0,02	24.901	51
ESVAL	Ritoque	20	6,5		0,02	24.901	53
ESVAL	Tranque la Luz	60	62,8		0,02	36.923	83
ESVAL	San Juan	1250	300		0,24	551.285	1.505

En las figuras siguientes se grafican los costos de inversión y O&M para las PTAP de Aguas del Valle y Esval. En el caso de Esval se omite la PTAP San Juan ya que considera otra metodología para el tratamiento del agua de rechazo.

Figura N° 4.5: Soluciones propuestas por Aguas del Valle

IFARLE Ingenieros Civiles Consultores Ltda.

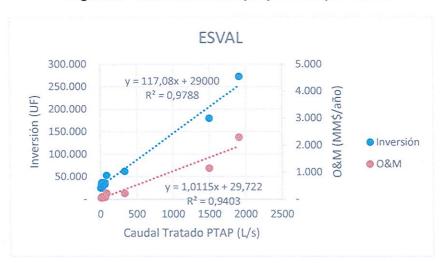


Figura N° 4.6: Soluciones propuestas por ESVAL

4.5.2. Caso PTAP Las Rojas

A continuación, se estudia el caso particular de la PTAP Las Rojas de Aguas del Valle. Todas las PTAP de Aguas del Valle y Esval siguen la misma metodología, excepto la PTAP San Juan.

Figura N° 4.7: PTAP Las Rojas - Aguas del Valle

Tabla N° 4.13: Dimensionamiento PTAP Las Rojas

Parámetro	Unidad	Valor
Localidad		Las Rojas
Nombre PTAP		Las Rojas
Caudal Tratado	L/s	750
Caudal Lodos (retrolavado)	L/s	518,8
N° Filtros	N°	6,00
Volumen Retrolavado	m3/día	2801,25
Volumen requerido estanque	m3	1400,6
Volumen a Deshidratar	m3/día	560,3
Volumen a Deshidratar	m3/h	46,7
Volumen Deshidratado	m3/día	22,4
Equipo deshidratado		Aldec-105

La tabla siguiente detalla el cálculo del OPEX de la PTAP Las Rojas.

Tabla N° 4.14: OPEX PTAP Las Rojas

Oi/-	Costos M\$/año		
Operación & Mantenimiento	Las Rojas		
OPEX EE	50.204		
OPEX Lodos	531.376		
OPEX Químicos	15.787		
OPEX Mantenimiento	149.372		
TOTAL	746.739		

La tabla siguiente detalla el cálculo del CAPEX de la PTAP Las Rojas.

Tabla N° 4.15: CAPEX PTAP Las Rojas

ITEM	DESCRIPCIÓN	TOTAL	TOTAL UF	
	DESCRIPCION	M\$		
1	Centrifuga	257.298	7.129	
2	Estanque	184.286	5.106	
3	Obras Civiles	607.177	16.824	
4	Galpón	155.912	4.320	
5	Obras Eléctricas	151.794	4.206	
6	Obras Hidráulicas	179.393	4.971	
7	Costos de Terreno	259.853	7.200	
8	Costos de Ingeniería	89.786	2.488	
9	Costos de ITO	53.871	1.493	
10	Costos de DIA	240.000	6.650	
	Costos GG y Utilidades	808.071	22.390	
	TOTAL	2.987.441	82.776	

IFARLE Ingenieros Civiles Consultores Ltda.

5. CONCLUSIONES Y RECOMENDACIONES

Las conclusiones y recomendaciones principales son:

1) Problema Principal

El problema principal que se presentará será el transporte y la disposición de los lodos, en particular en la zona central del país en que el parámetro crítico es la turbiedad.

2) Exclusión Parcial

Se recomienda solicitar que el DS 90 no aplique a las aguas residuales de desarenadores y predecantadores ya que estas normalmente no contienen productos químicos agregados y para aguas de alta turbiedad representan del orden del 90% del lodo seco. O sea, se propone agregar en el Artículo 3 del anteproyecto de norma el siguiente punto:

e) A las descargas de desarenadores y predecantadores.

Ello disminuiría considerablemente el transporte y la disposición de lodos.

3) Exclusión total

Una alternativa de lo anterior es solicitar que el DS 90 no aplique a las aguas residuales de PTAP.

O sea, se propone agregar en el Artículo 3 del anteproyecto de norma el siguiente punto:

e) A las descargas de plantas de tratamiento de agua potable (PTAP).

Como resultado de la exclusión precedente, y en concordancia con lo que ha planteado la SISS desde el año 2004, se debiese elaborar una norma de emisión de descargas de residuos líquidos de plantas de tratamiento de agua potable. Esta normativa puede ser de aplicación general a descargas y/o de aplicación específica.

4) Norma específica

El estudio de una norma de emisión de descargas de residuos líquidos de plantas de tratamiento de agua potable debiese incluir:

- La caracterización de las aguas residuales de cada proceso de tratamiento para conocer el nivel de contaminantes y estimar la cantidad de lodos por proceso.
- Para plantas de tratamiento pequeñas parece más recomendable verter las aguas residuales al alcantarillado y tratarlas en las plantas de tratamiento de aguas servidas.

- De acuerdo a los antecedentes analizados, normalmente el diseño de instalaciones de tratamiento de aguas residuales no considera vertido de cuerpos de agua, ya que todo el efluente líquido se recircula.
- La valorización de los lodos.

5) Cotratamiento

Además, para muchas plantas de tratamiento pequeñas parece más recomendable verter las aguas residuales al alcantarillado y tratarlas en las plantas de tratamiento de aguas servidas.

Ya que ambas plantas (PTAP Y PTAS) pertenecen a la misma empresa, el único posible inconveniente sería que la PTAS receptora no tuviera capacidad para tratar los residuos.

